These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 24932637)
1. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association. Cheng L; Li J; Ju P; Peng J; Wang Y PLoS One; 2014; 9(6):e99415. PubMed ID: 24932637 [TBL] [Abstract][Full Text] [Related]
2. IDSSIM: an lncRNA functional similarity calculation model based on an improved disease semantic similarity method. Fan W; Shang J; Li F; Sun Y; Yuan S; Liu JX BMC Bioinformatics; 2020 Jul; 21(1):339. PubMed ID: 32736513 [TBL] [Abstract][Full Text] [Related]
3. Computational drug repositioning using meta-path-based semantic network analysis. Tian Z; Teng Z; Cheng S; Guo M BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084 [TBL] [Abstract][Full Text] [Related]
4. DisSetSim: an online system for calculating similarity between disease sets. Hu Y; Zhao L; Liu Z; Ju H; Shi H; Xu P; Wang Y; Cheng L J Biomed Semantics; 2017 Sep; 8(Suppl 1):28. PubMed ID: 29297411 [TBL] [Abstract][Full Text] [Related]
5. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs. Le DH; Dao LTM J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261 [TBL] [Abstract][Full Text] [Related]
6. Prioritizing candidate diseases-related metabolites based on literature and functional similarity. Wang Y; Juan L; Peng J; Zang T; Wang Y BMC Bioinformatics; 2019 Nov; 20(Suppl 18):574. PubMed ID: 31760947 [TBL] [Abstract][Full Text] [Related]
7. Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI. Bettembourg C; Diot C; Dameron O PLoS One; 2015; 10(7):e0133579. PubMed ID: 26230274 [TBL] [Abstract][Full Text] [Related]
8. Network-based inference methods for drug repositioning. Chen H; Zhang H; Zhang Z; Cao Y; Tang W Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690 [TBL] [Abstract][Full Text] [Related]
9. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity. Lei S; Lei X; Chen M; Pan Y Interdiscip Sci; 2024 Mar; 16(1):160-175. PubMed ID: 38103130 [TBL] [Abstract][Full Text] [Related]
10. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543 [TBL] [Abstract][Full Text] [Related]
11. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness. Liu M; Thomas PD BMC Bioinformatics; 2019 Mar; 20(1):155. PubMed ID: 30917779 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the significance of protein functional similarity based on gene ontology. Konopka BM; Golda T; Kotulska M J Comput Biol; 2014 Nov; 21(11):809-22. PubMed ID: 25188814 [TBL] [Abstract][Full Text] [Related]
13. NTD-DR: Nonnegative tensor decomposition for drug repositioning. Jamali AA; Tan Y; Kusalik A; Wu FX PLoS One; 2022; 17(7):e0270852. PubMed ID: 35862409 [TBL] [Abstract][Full Text] [Related]
14. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Jiang HJ; Huang YA; You ZH Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871 [TBL] [Abstract][Full Text] [Related]
15. A New Semantic Functional Similarity over Gene Ontology. Jeong JC; Chen X IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):322-34. PubMed ID: 26357220 [TBL] [Abstract][Full Text] [Related]
16. Bi-directional semantic similarity for gene ontology to optimize biological and clinical analyses. Bien SJ; Park CH; Shim HJ; Yang W; Kim J; Kim JH J Am Med Inform Assoc; 2012; 19(5):765-74. PubMed ID: 22374934 [TBL] [Abstract][Full Text] [Related]
17. TopoICSim: a new semantic similarity measure based on gene ontology. Ehsani R; Drabløs F BMC Bioinformatics; 2016 Jul; 17(1):296. PubMed ID: 27473391 [TBL] [Abstract][Full Text] [Related]
18. An Integrated Data Driven Approach to Drug Repositioning Using Gene-Disease Associations. Mullen J; Cockell SJ; Woollard P; Wipat A PLoS One; 2016; 11(5):e0155811. PubMed ID: 27196054 [TBL] [Abstract][Full Text] [Related]
19. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. Wu G; Liu J; Wang C BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383 [TBL] [Abstract][Full Text] [Related]
20. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model. Le DH; Nguyen-Ngoc D Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]