These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24932637)

  • 21. Human Pathway-Based Disease Network.
    Yu L; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1240-1249. PubMed ID: 29990107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigations on factors influencing HPO-based semantic similarity calculation.
    Peng J; Li Q; Shang X
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):34. PubMed ID: 29297376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A relation based measure of semantic similarity for Gene Ontology annotations.
    Sheehan B; Quigley A; Gaudin B; Dobson S
    BMC Bioinformatics; 2008 Nov; 9():468. PubMed ID: 18983678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.
    Peng J; Zhang X; Hui W; Lu J; Li Q; Liu S; Shang X
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):18. PubMed ID: 29560823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlating information contents of gene ontology terms to infer semantic similarity of gene products.
    Gan M
    Comput Math Methods Med; 2014; 2014():891842. PubMed ID: 24963342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug repositioning using drug-disease vectors based on an integrated network.
    Lee T; Yoon Y
    BMC Bioinformatics; 2018 Nov; 19(1):446. PubMed ID: 30463505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calculating phenotypic similarity between genes using hierarchical structure data based on semantic similarity.
    Zhang S; Chang Z; Li Z; DuanMu H; Li Z; Li K; Liu Y; Qiu F; Xu Y
    Gene; 2012 Apr; 497(1):58-65. PubMed ID: 22305981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Efficient Parallelized Ontology Network-Based Semantic Similarity Measure for Big Biomedical Document Clustering.
    Li M; Chen T; Ryu KH; Jin CH
    Comput Math Methods Med; 2021; 2021():7937573. PubMed ID: 34795792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Factored Gene-Gene Proximity Measures Exploiting Biological Knowledge Extracted from Gene Ontology: Application in Gene Clustering.
    Acharya S; Saha S; Pradhan P
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):207-219. PubMed ID: 29994130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.
    Masino AJ; Dechene ET; Dulik MC; Wilkens A; Spinner NB; Krantz ID; Pennington JW; Robinson PN; White PS
    BMC Bioinformatics; 2014 Jul; 15(1):248. PubMed ID: 25047600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge- and IC-based hybrid method.
    Wu X; Pang E; Lin K; Pei ZM
    PLoS One; 2013; 8(5):e66745. PubMed ID: 23741529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. More Agility to Semantic Similarities Algorithm Implementations.
    Tsaramirsis K; Tsaramirsis G; Khan FQ; Ahmad A; Khadidos AO; Khadidos A
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31905999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion.
    Yan CK; Wang WX; Zhang G; Wang JL; Patel A
    J Comput Biol; 2019 Nov; 26(11):1230-1242. PubMed ID: 31140857
    [No Abstract]   [Full Text] [Related]  

  • 38. Assessing drug target association using semantic linked data.
    Chen B; Ding Y; Wild DJ
    PLoS Comput Biol; 2012; 8(7):e1002574. PubMed ID: 22859915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generating Gene Ontology-Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics Database.
    Davis AP; Wiegers TC; King BL; Wiegers J; Grondin CJ; Sciaky D; Johnson RJ; Mattingly CJ
    PLoS One; 2016; 11(5):e0155530. PubMed ID: 27171405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of Semantic Similarity between Proteins Using Information Content and Topological Properties of the Gene Ontology Graph.
    Dutta P; Basu S; Kundu M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):839-849. PubMed ID: 28371781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.