These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24933346)

  • 1. Molecular mechanisms underlying skeletal growth arrest by cutaneous scarring.
    Li J; Johnson CA; Smith AA; Shi B; Brunski JB; Helms JA
    Bone; 2014 Sep; 66():223-31. PubMed ID: 24933346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.
    Ferguson MW; O'Kane S
    Philos Trans R Soc Lond B Biol Sci; 2004 May; 359(1445):839-50. PubMed ID: 15293811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic effects of oral tolerance reduce the cutaneous scarring.
    Costa RA; Matos LB; Cantaruti TA; de Souza KS; Vaz NM; Carvalho CR
    Immunobiology; 2016 Mar; 221(3):475-85. PubMed ID: 26652243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical.
    Occleston NL; Laverty HG; O'Kane S; Ferguson MW
    J Biomater Sci Polym Ed; 2008; 19(8):1047-63. PubMed ID: 18644230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupting the intrinsic growth potential of a suture contributes to midfacial hypoplasia.
    Li J; Johnson CA; Smith AA; Salmon B; Shi B; Brunski J; Helms JA
    Bone; 2015 Dec; 81():186-195. PubMed ID: 24780877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.
    Peacock HM; Gilbert EA; Vickaryous MK
    J Anat; 2015 Nov; 227(5):596-610. PubMed ID: 26360824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation.
    Profyris C; Tziotzios C; Do Vale I
    J Am Acad Dermatol; 2012 Jan; 66(1):1-10; quiz 11-2. PubMed ID: 22177631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring.
    Zonari A; Martins TM; Paula AC; Boeloni JN; Novikoff S; Marques AP; Correlo VM; Reis RL; Goes AM
    Acta Biomater; 2015 Apr; 17():170-81. PubMed ID: 25662911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibiting scar formation in rat cutaneous wounds by blocking TGF-beta signaling].
    Liu W; Chua CH; Wu XL; Wang DR; Yin DM; Cui L; Cao YL; Longaker MT
    Zhonghua Yi Xue Za Zhi; 2003 Jan; 83(1):31-6. PubMed ID: 12757642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.
    Li Z; Wang H; Yang B; Sun Y; Huo R
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():181-8. PubMed ID: 26354253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural mechanics modeling reveals stress-adaptive features of cutaneous scars.
    Ghosh B; Mandal M; Mitra P; Chatterjee J
    Biomech Model Mechanobiol; 2021 Feb; 20(1):371-377. PubMed ID: 32920729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early scar plasticity as a cause of scar contracture.
    Fujimori R
    Ann Plast Surg; 1980 Jul; 5(1):67-73. PubMed ID: 7425497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies.
    Kieran I; Knock A; Bush J; So K; Metcalfe A; Hobson R; Mason T; O'Kane S; Ferguson M
    Wound Repair Regen; 2013; 21(3):428-36. PubMed ID: 23627460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair.
    Colwell AS; Beanes SR; Soo C; Dang C; Ting K; Longaker MT; Atkinson JB; Lorenz HP
    Plast Reconstr Surg; 2005 Jan; 115(1):204-12. PubMed ID: 15622252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.
    Ud-Din S; Volk SW; Bayat A
    Exp Dermatol; 2014 Sep; 23(9):615-9. PubMed ID: 24863070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of strain artefacts arising from a pre-defined callus domain in models of bone healing mechanobiology.
    Wilson CJ; Schuetz MA; Epari DR
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1129-41. PubMed ID: 25687769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertrophic scar contracture is mediated by the TRPC3 mechanical force transducer via NFkB activation.
    Ishise H; Larson B; Hirata Y; Fujiwara T; Nishimoto S; Kubo T; Matsuda K; Kanazawa S; Sotsuka Y; Fujita K; Kakibuchi M; Kawai K
    Sci Rep; 2015 Jun; 5():11620. PubMed ID: 26108359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel therapies for scar reduction and regenerative healing of skin wounds.
    Rhett JM; Ghatnekar GS; Palatinus JA; O'Quinn M; Yost MJ; Gourdie RG
    Trends Biotechnol; 2008 Apr; 26(4):173-80. PubMed ID: 18295916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing.
    Buganza Tepole A; Kuhl E
    Comput Methods Biomech Biomed Engin; 2016; 19(1):13-30. PubMed ID: 25421487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of mechanical loading in the progressive ossification of a fracture callus.
    Blenman PR; Carter DR; Beaupré GS
    J Orthop Res; 1989; 7(3):398-407. PubMed ID: 2703931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.