These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24933576)

  • 81. The Graz hemisphere splint: a new precise, non-invasive method of replacing the dental arch of 3D-models by plaster models.
    Santler G
    J Craniomaxillofac Surg; 1998 Jun; 26(3):169-73. PubMed ID: 9702636
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: a clinical report.
    Papaspyridakos P; Lal K
    J Prosthet Dent; 2008 Sep; 100(3):165-72. PubMed ID: 18762028
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].
    Lin Y; Chen X; Zhang S; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):424-7. PubMed ID: 16706381
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Face bow and articulator for planning orthognathic surgery: 2 articulator.
    Walker F; Ayoub AF; Moos KF; Barbenel J
    Br J Oral Maxillofac Surg; 2008 Oct; 46(7):573-8. PubMed ID: 18462853
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Techniques for the use of CT imaging for the fabrication of surgical guides.
    Ganz SD
    Atlas Oral Maxillofac Surg Clin North Am; 2006 Mar; 14(1):75-97. PubMed ID: 16522511
    [No Abstract]   [Full Text] [Related]  

  • 86. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.
    Ender A; Mehl A
    J Prosthet Dent; 2013 Feb; 109(2):121-8. PubMed ID: 23395338
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparison of the postoperative and follow-up accuracy of articulator model surgery and virtual surgical planning in skeletal class III patients.
    Xu R; Ye N; Zhu S; Shi B; Li J; Lai W
    Br J Oral Maxillofac Surg; 2020 Oct; 58(8):933-939. PubMed ID: 32446591
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Moving the mandible to the retruded contact position for simulating the hinge movement in virtual three-dimensional orthognathic surgery by integrating the plaster models.
    Dai J; Zhang J; Hu G; Xin P; Shen S; Shen SG
    J Craniofac Surg; 2013; 24(5):e470-2. PubMed ID: 24036817
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Three-Dimensional Static Articulation Accuracy of Virtual Models - Part I: System Trueness and Precision.
    Yee SHX; Esguerra RJ; Chew AAQ; Wong KM; Tan KBC
    J Prosthodont; 2018 Feb; 27(2):129-136. PubMed ID: 29235202
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Current status of surgical planning and transfer methods in orthognathic surgery.
    Pascal E; Majoufre C; Bondaz M; Courtemanche A; Berger M; Bouletreau P
    J Stomatol Oral Maxillofac Surg; 2018 Jun; 119(3):245-248. PubMed ID: 29476926
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Keyhole System: A Computer-Assisted Designed and Computer-Assisted Manufactured Maxillomandibular Complex Repositioner in Orthognathic Surgery.
    Lee UL; Kwon JS; Choi YJ
    J Oral Maxillofac Surg; 2015 Oct; 73(10):2024-9. PubMed ID: 25869979
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The precision of computer-generated surgical splints.
    Gateno J; Xia J; Teichgraeber JF; Rosen A; Hultgren B; Vadnais T
    J Oral Maxillofac Surg; 2003 Jul; 61(7):814-7. PubMed ID: 12856256
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A new technique for the construction of interocclusal wafers in orthognathic surgery.
    Sunderland T; Bainton R
    Br J Oral Maxillofac Surg; 1995 Oct; 33(5):321-2. PubMed ID: 8555152
    [No Abstract]   [Full Text] [Related]  

  • 94. Accuracy of rapid prototype models for head and neck reconstruction.
    Taft RM; Kondor S; Grant GT
    J Prosthet Dent; 2011 Dec; 106(6):399-408. PubMed ID: 22133397
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Research on seamless development of surgical instruments based on biological mechanisms using CAD and 3D printer.
    Yamamoto I; Ota R; Zhu R; Lawn M; Ishimatsu T; Nagayasu T; Yamasaki N; Takagi K; Koji T
    Biomed Mater Eng; 2015; 26 Suppl 1():S341-5. PubMed ID: 26406021
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Innovations in dentistry. The influence of build angle on the fit of a 3D printed occlusal splint].
    Zwerink LGJM; Xi T; Verhulst AC; Tellman JWH; Baan F; Maal TJ
    Ned Tijdschr Tandheelkd; 2020 Mar; 127(3):171-176. PubMed ID: 32343277
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Virtual planning in orthognathic surgery.
    Stokbro K; Aagaard E; Torkov P; Bell RB; Thygesen T
    Int J Oral Maxillofac Surg; 2014 Aug; 43(8):957-65. PubMed ID: 24746388
    [TBL] [Abstract][Full Text] [Related]  

  • 98. CAD/CAM fabrication of occlusal splints for orthognathic surgery.
    Okumura H; Chen LH; Yokoe Y; Tsutsumi S; Oka M
    J Clin Orthod; 1999 Apr; 33(4):231-5. PubMed ID: 10534999
    [No Abstract]   [Full Text] [Related]  

  • 99. Silicone wafers at the Royal Surrey County Hospital: 3-year review.
    Kearns A; Gurney B; Johnson P
    Br J Oral Maxillofac Surg; 2015 Dec; 53(10):1043-4. PubMed ID: 26243386
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The University Münster model surgery system for orthognathic surgery - The digital update.
    Stamm T; Böttcher D; Kleinheinz J
    Head Face Med; 2021 Jul; 17(1):31. PubMed ID: 34301272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.