These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 24933898)
1. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812 [TBL] [Abstract][Full Text] [Related]
3. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt. Galal TM; Shehata HS Int J Phytoremediation; 2016 Dec; 18(12):1221-30. PubMed ID: 27257886 [TBL] [Abstract][Full Text] [Related]
4. Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Corno L; Pilu R; Adani F Biotechnol Adv; 2014 Dec; 32(8):1535-49. PubMed ID: 25457226 [TBL] [Abstract][Full Text] [Related]
5. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
6. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267 [TBL] [Abstract][Full Text] [Related]
7. The potential of native species as bioenergy crops on trace-element contaminated Mediterranean lands. Domínguez MT; Montiel-Rozas MM; Madejón P; Diaz MJ; Madejón E Sci Total Environ; 2017 Jul; 590-591():29-39. PubMed ID: 28288419 [TBL] [Abstract][Full Text] [Related]
8. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. Nsanganwimana F; Pourrut B; Mench M; Douay F J Environ Manage; 2014 Oct; 143():123-34. PubMed ID: 24905642 [TBL] [Abstract][Full Text] [Related]
9. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Pogrzeba M; Rusinowski S; Sitko K; Krzyżak J; Skalska A; Małkowski E; Ciszek D; Werle S; McCalmont JP; Mos M; Kalaji HM Environ Pollut; 2017 Jun; 225():163-174. PubMed ID: 28365513 [TBL] [Abstract][Full Text] [Related]
10. Growth of Populus alba and its influence on soil trace element availability. Ciadamidaro L; Madejón E; Puschenreiter M; Madejón P Sci Total Environ; 2013 Jun; 454-455():337-47. PubMed ID: 23562686 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry? Bonanno G; Cirelli GL; Toscano A; Lo Giudice R; Pavone P Sci Total Environ; 2013 May; 452-453():349-54. PubMed ID: 23534998 [TBL] [Abstract][Full Text] [Related]
12. Safety of food crops on land contaminated with trace elements. Singh BR; Gupta SK; Azaizeh H; Shilev S; Sudre D; Song WY; Martinoia E; Mench M J Sci Food Agric; 2011 Jun; 91(8):1349-66. PubMed ID: 21445857 [TBL] [Abstract][Full Text] [Related]
13. Trace elements in agroecosystems and impacts on the environment. He ZL; Yang XE; Stoffella PJ J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528 [TBL] [Abstract][Full Text] [Related]
14. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917 [TBL] [Abstract][Full Text] [Related]
16. Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Bonanno G Ecotoxicol Environ Saf; 2012 Jun; 80():20-7. PubMed ID: 22364831 [TBL] [Abstract][Full Text] [Related]
17. Potentials of Miscanthus x giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Nsanganwimana F; Al Souki KS; Waterlot C; Douay F; Pelfrêne A; Ridošková A; Louvel B; Pourrut B Ecotoxicol Environ Saf; 2021 May; 214():112125. PubMed ID: 33714138 [TBL] [Abstract][Full Text] [Related]
18. Nutrient limitation determines the suitability of a municipal organic waste for phytomanaging metal(loid) enriched mine tailings with a pine-grass co-culture. Martínez-Oró D; Párraga-Aguado I; Querejeta JI; Álvarez-Rogel J; Conesa HM Chemosphere; 2019 Jan; 214():436-444. PubMed ID: 30273877 [TBL] [Abstract][Full Text] [Related]
19. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Evangelou MW; Robinson BH; Günthardt-Goerg MS; Schulin R Int J Phytoremediation; 2013; 15(1):77-90. PubMed ID: 23487987 [TBL] [Abstract][Full Text] [Related]
20. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. Santoro DF; Sicilia A; Testa G; Cosentino SL; Lo Piero AR BMC Genomics; 2022 Jun; 23(1):427. PubMed ID: 35672691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]