These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 24933898)
21. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants]. Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843 [TBL] [Abstract][Full Text] [Related]
22. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Bonanno G Ecotoxicol Environ Saf; 2013 Nov; 97():124-30. PubMed ID: 23932595 [TBL] [Abstract][Full Text] [Related]
23. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Idaszkin YL; Bouza PJ; Marinho CH; Gil MN Mar Pollut Bull; 2014 Dec; 89(1-2):444-450. PubMed ID: 25457812 [TBL] [Abstract][Full Text] [Related]
24. Phytoremediation: an overview of metallic ion decontamination from soil. Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555 [TBL] [Abstract][Full Text] [Related]
25. Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms. Allinson G Bull Environ Contam Toxicol; 2017 Dec; 99(6):743-747. PubMed ID: 29080112 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
27. Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Nguyen TXT; Amyot M; Labrecque M Chemosphere; 2017 Feb; 168():131-138. PubMed ID: 27776231 [TBL] [Abstract][Full Text] [Related]
28. Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil. Ahsan MT; Najam-Ul-Haq M; Saeed A; Mustafa T; Afzal M Environ Sci Pollut Res Int; 2018 Mar; 25(7):7021-7032. PubMed ID: 29273991 [TBL] [Abstract][Full Text] [Related]
29. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks. Pérez-de-Mora A; Madejón P; Burgos P; Cabrera F; Lepp NW; Madejón E Environ Pollut; 2011 Oct; 159(10):3018-27. PubMed ID: 21561696 [TBL] [Abstract][Full Text] [Related]
30. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Sarathambal C; Khankhane PJ; Gharde Y; Kumar B; Varun M; Arun S Int J Phytoremediation; 2017 Apr; 19(4):360-370. PubMed ID: 27592507 [TBL] [Abstract][Full Text] [Related]
31. Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops. Ren L; Eller F; Lambertini C; Guo WY; Brix H; Sorrell BK Sci Total Environ; 2019 May; 664():1150-1161. PubMed ID: 30901787 [TBL] [Abstract][Full Text] [Related]
32. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
33. Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil. Gaskin S; Soole K; Bentham R Int J Phytoremediation; 2008; 10(5):378-89. PubMed ID: 19260221 [TBL] [Abstract][Full Text] [Related]
34. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Mirza N; Mahmood Q; Pervez A; Ahmad R; Farooq R; Shah MM; Azim MR Bioresour Technol; 2010 Aug; 101(15):5815-9. PubMed ID: 20363125 [TBL] [Abstract][Full Text] [Related]
35. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Du Laing G; Rinklebe J; Vandecasteele B; Meers E; Tack FM Sci Total Environ; 2009 Jun; 407(13):3972-85. PubMed ID: 18786698 [TBL] [Abstract][Full Text] [Related]
36. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related]
37. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Van Slycken S; Witters N; Meers E; Peene A; Michels E; Adriaensen K; Ruttens A; Vangronsveld J; Du Laing G; Wierinck I; Van Dael M; Van Passel S; Tack FM Environ Pollut; 2013 Jul; 178():375-80. PubMed ID: 23607942 [TBL] [Abstract][Full Text] [Related]
38. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Pogrzeba M; Rusinowski S; Krzyżak J Environ Sci Pollut Res Int; 2018 Apr; 25(12):12096-12106. PubMed ID: 29453723 [TBL] [Abstract][Full Text] [Related]
39. Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Papazoglou EG; Karantounias GA; Vemmos SN; Bouranis DL Environ Int; 2005 Feb; 31(2):243-9. PubMed ID: 15661290 [TBL] [Abstract][Full Text] [Related]
40. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]