These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24933905)

  • 81. Phytoremediation of cadmium-contaminated soils by young Douglas fir trees: effects of cadmium exposure on cell wall composition.
    Astier C; Gloaguen V; Faugeron C
    Int J Phytoremediation; 2014; 16(7-12):790-803. PubMed ID: 24933885
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil.
    Huang H; Yu N; Wang L; Gupta DK; He Z; Wang K; Zhu Z; Yan X; Li T; Yang XE
    Bioresour Technol; 2011 Dec; 102(23):11034-8. PubMed ID: 21993327
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.
    Long XX; Zhang YG; Jun D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere.
    Sun H; Xu J; Yang S; Liu G; Dai S
    Chemosphere; 2004 Jan; 54(4):569-74. PubMed ID: 14581059
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores?
    Hill KA; Lion LW; Ahner BA
    Environ Sci Technol; 2002 Dec; 36(24):5363-8. PubMed ID: 12521162
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.
    Sun Y; Sun G; Xu Y; Wang L; Liang X; Lin D; Hu F
    Environ Sci Pollut Res Int; 2013 May; 20(5):3290-9. PubMed ID: 23093419
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Alleviated toxicity of cadmium by the rhizosphere of Kandelia obovata (S., L.) Yong.
    Weng B; Huang Y; Liu J; Lu H; Yan C
    Bull Environ Contam Toxicol; 2014 Nov; 93(5):603-10. PubMed ID: 25193445
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Plant growth promotion and enhanced uptake of Cd by combinatorial application of
    Hayat K; Menhas S; Bundschuh J; Zhou P; Niazi NK; Amna ; Hussain A; Hayat S; Ali H; Wang J; Khan AA; Ali A; Munis FH; Chaudhary HJ
    Int J Phytoremediation; 2020; 22(13):1372-1384. PubMed ID: 32579378
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Phytoextraction and dissipation of lindane by Spinacia oleracea L.
    Dubey RK; Tripathi V; Singh N; Abhilash PC
    Ecotoxicol Environ Saf; 2014 Nov; 109():22-6. PubMed ID: 25133347
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Ammonium-based fertilizers enhance Cd accumulation in Carpobrotus rossii grown in two soils differing in pH.
    Cheng M; Wang A; Tang C
    Chemosphere; 2017 Dec; 188():689-696. PubMed ID: 28923732
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish.
    Luo J; Cheng H; Ren J; Davison W; Zhang H
    Environ Sci Technol; 2014 Jul; 48(13):7305-13. PubMed ID: 24853263
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sub-millimeter distribution of labile trace element fluxes in the rhizosphere explains differential effects of soil liming on cadmium and zinc uptake in maize.
    Smolders E; Wagner S; Prohaska T; Irrgeher J; Santner J
    Sci Total Environ; 2020 Oct; 738():140311. PubMed ID: 32806385
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa.
    Li L; Liu X; Peijnenburg WJ; Zhao J; Chen X; Yu J; Wu H
    Ecotoxicol Environ Saf; 2012 Jan; 75(1):1-7. PubMed ID: 21943551
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sunflower seedlings hyperaccumulate Selenium.
    Garousi F; Kovács B; Veres S
    Acta Biol Hung; 2018 Jun; 69(2):197-209. PubMed ID: 29888665
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Organic Acid Excretion in Root Exudates as a Mechanism of Cadmium Uptake in a Sonchus Asper-Zea Mays Intercropping System.
    Qin L; Li Z; Li B; Wang J; Zu Y; Jiang M; Li Y
    Bull Environ Contam Toxicol; 2021 Dec; 107(6):1059-1064. PubMed ID: 34459950
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study.
    Lin Z; Schneider A; Nguyen C; Sterckeman T
    Environ Sci Pollut Res Int; 2014 Nov; 21(22):12811-26. PubMed ID: 24969429
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zea mays L.) from natural Se-Cd rich soils.
    Zhang Z; Yuan L; Qi S; Yin X
    Sci Total Environ; 2019 Oct; 688():1228-1235. PubMed ID: 31726553
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Plant availability of cadmium in presence of organic acids: an interactive aspect.
    Nigam R; Srivastava S; Prakash S; Srivastava MM
    J Environ Biol; 2002 Apr; 23(2):175-80. PubMed ID: 12602855
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The response of maize protoplasts to cadmium stress mitigated by silicon.
    Kollárová K; Kusá Z; Vatehová-Vivodová Z; Lišková D
    Ecotoxicol Environ Saf; 2019 Apr; 170():488-494. PubMed ID: 30553927
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution.
    Tschan M; Robinson B; Schulin R
    Environ Geochem Health; 2008 Apr; 30(2):187-91. PubMed ID: 18253841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.