BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24934184)

  • 1. Drug repurposing based on drug-drug interaction.
    Zhou B; Wang R; Wu P; Kong DX
    Chem Biol Drug Des; 2015 Feb; 85(2):137-44. PubMed ID: 24934184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug repositioning by applying 'expression profiles' generated by integrating chemical structure similarity and gene semantic similarity.
    Tan F; Yang R; Xu X; Chen X; Wang Y; Ma H; Liu X; Wu X; Chen Y; Liu L; Jia X
    Mol Biosyst; 2014 May; 10(5):1126-38. PubMed ID: 24603772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug repurposing with network reinforcement.
    Nam Y; Kim M; Chang HS; Shin H
    BMC Bioinformatics; 2019 Jul; 20(Suppl 13):383. PubMed ID: 31337333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GES polypharmacology fingerprints: a novel approach for drug repositioning.
    PĂ©rez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW
    J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Drug Repurposing Method Based on Drug-Drug Interaction Networks and Using Energy Model Layouts.
    Udrescu M; Udrescu L
    Methods Mol Biol; 2019; 1903():185-201. PubMed ID: 30547443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data.
    Iwata H; Sawada R; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Feb; 55(2):446-59. PubMed ID: 25602292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REPRODUCIBLE DRUG REPURPOSING: WHEN SIMILARITY DOES NOT SUFFICE.
    Guney E
    Pac Symp Biocomput; 2017; 22():132-143. PubMed ID: 27896969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A weighted and integrated drug-target interactome: drug repurposing for schizophrenia as a use case.
    Huang LC; Soysal E; Zheng W; Zhao Z; Xu H; Sun J
    BMC Syst Biol; 2015; 9 Suppl 4(Suppl 4):S2. PubMed ID: 26100720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of drug gene associations via ontological profile similarity with application to drug repositioning.
    Kissa M; Tsatsaronis G; Schroeder M
    Methods; 2015 Mar; 74():71-82. PubMed ID: 25498216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.
    Shi JY; Yiu SM; Li Y; Leung HC; Chin FY
    Methods; 2015 Jul; 83():98-104. PubMed ID: 25957673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identify drug repurposing candidates by mining the protein data bank.
    Moriaud F; Richard SB; Adcock SA; Chanas-Martin L; Surgand JS; Ben Jelloul M; Delfaud F
    Brief Bioinform; 2011 Jul; 12(4):336-40. PubMed ID: 21768131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Bipartite Graph-Based Drug Repurposing Method.
    Zheng S; Ma H; Wang J; Li J
    Methods Mol Biol; 2019; 1903():115-127. PubMed ID: 30547439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a tripartite network for the prediction of drug targets.
    Kunimoto R; Bajorath J
    J Comput Aided Mol Des; 2018 Feb; 32(2):321-330. PubMed ID: 29340865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repurposing and adverse event prediction using high-throughput literature analysis.
    Deftereos SN; Andronis C; Friedla EJ; Persidis A; Persidis A
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(3):323-34. PubMed ID: 21416632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Clinical Phenotype and Gene Expression Data to Prioritize Novel Drug Uses.
    Paik H; Chen B; Sirota M; Hadley D; Butte AJ
    CPT Pharmacometrics Syst Pharmacol; 2016 Nov; 5(11):599-607. PubMed ID: 27860440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medical genetics-based drug repurposing for Alzheimer's disease.
    Zhang XZ; Quan Y; Tang GY
    Brain Res Bull; 2015 Jan; 110():26-9. PubMed ID: 25446738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway analysis of GWAS loci identifies novel drug targets and repurposing opportunities.
    Jhamb D; Magid-Slav M; Hurle MR; Agarwal P
    Drug Discov Today; 2019 Jun; 24(6):1232-1236. PubMed ID: 30935985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.