These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24934194)

  • 21. Blending Powder Process for Recycling Sintered Nd-Fe-B Magnets.
    Prokofev PA; Kolchugina NB; Skotnicova K; Burkhanov GS; Kursa M; Zheleznyi MV; Dormidontov NA; Cegan T; Bakulina AS; Koshkidko YS; Smetana B
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recycling potential of neodymium: the case of computer hard disk drives.
    Sprecher B; Kleijn R; Kramer GJ
    Environ Sci Technol; 2014 Aug; 48(16):9506-13. PubMed ID: 25029356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of automobiles for the future of aluminum recycling.
    Modaresi R; Müller DB
    Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment.
    Ruffino B; Fiore S; Zanetti MC
    Waste Manag; 2014 Jan; 34(1):148-55. PubMed ID: 24140377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-Loop Recycling of Nd-Fe-B Permanent Magnets: A Sustainable Solution for the RE
    Mishra A; Khoshsima S; Tomše T; Podmiljšak B; Šturm S; Burkhardt C; Žužek K
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of hard magnetic NdFeB composite particles by recycling the waste using microwave assisted auto-combustion and reduction method.
    Zhou X; Tian YL; Yu HY; Zhang H; Zhong XC; Liu ZW
    Waste Manag; 2019 Mar; 87():645-651. PubMed ID: 31109566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of copper and iron from ethanolic solutions by an anion exchange resin and its implication to rare-earth magnet recycling.
    Avdibegović D; Barbier E; Jaklič B; Škapin SD; Spreitzer M; Binnemans K
    Chemosphere; 2023 Jul; 330():138603. PubMed ID: 37028714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of High-Performance Hot-Deformed Neodymium-Iron-Boron Magnets without Heavy Rare-Earth Elements.
    Hioki K
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ZnCl
    Ding A; Liu C; Zhang X; Lei L; Xiao C
    Environ Sci Technol; 2022 Apr; 56(7):4404-4412. PubMed ID: 35286072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.
    Kim D; Powell LE; Delmau LH; Peterson ES; Herchenroeder J; Bhave RR
    Environ Sci Technol; 2015 Aug; 49(16):9452-9. PubMed ID: 26107531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery and Separation of Dysprosium from Waste Neodymium Magnets through Cyphos IL 104 Extraction.
    Chen WS; Jian GC; Lee CH
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scrap automotive electronics: A mini-review of current management practices.
    Cucchiella F; D'Adamo I; Rosa P; Terzi S
    Waste Manag Res; 2016 Jan; 34(1):3-10. PubMed ID: 26467318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.
    Imashuku S; Wagatsuma K; Kawai J
    Microsc Microanal; 2016 Feb; 22(1):82-6. PubMed ID: 26739864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can torrefaction be a suitable method of enhancing shredder fines recycling?
    Jagodzińska K; Yang W; Jönsson PG; Forsgren C
    Waste Manag; 2021 Jun; 128():211-220. PubMed ID: 34000691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development and prospects of the end-of-life vehicle recycling system in Taiwan.
    Chen KC; Huang SH; Lian IW
    Waste Manag; 2010; 30(8-9):1661-9. PubMed ID: 20382516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.
    Allegrini E; Vadenbo C; Boldrin A; Astrup TF
    J Environ Manage; 2015 Mar; 151():132-43. PubMed ID: 25555136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic strength and corrosion of rare earth magnets.
    Ahmad KA; Drummond JL; Graber T; BeGole E
    Am J Orthod Dentofacial Orthop; 2006 Sep; 130(3):275.e11-5. PubMed ID: 16979482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [System Concept of Production Design and Development in Scrap and Metal Recycling].
    Kraffczyk T; Pomberger R
    Berg Huttenmannische Monatshefte; 2021; 166(3):125-130. PubMed ID: 33746231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.
    Alonso E; Sherman AM; Wallington TJ; Everson MP; Field FR; Roth R; Kirchain RE
    Environ Sci Technol; 2012 Mar; 46(6):3406-14. PubMed ID: 22304002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.