These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24934266)

  • 1. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.
    Yap RK; Whittaker M; Diao M; Stuetz RM; Jefferson B; Bulmus V; Peirson WL; Nguyen AV; Henderson RK
    Water Res; 2014 Sep; 61():253-62. PubMed ID: 24934266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymers as bubble surface modifiers in the flotation of algae.
    Henderson RK; Parsons SA; Jefferson B
    Environ Technol; 2010 Jun; 31(7):781-90. PubMed ID: 20586240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of algal organic matter in the separation of algae and cyanobacteria using the novel "Posi" - Dissolved air flotation process.
    Hanumanth Rao NR; Yap R; Whittaker M; Stuetz RM; Jefferson B; Peirson WL; Granville AM; Henderson RK
    Water Res; 2018 Mar; 130():20-30. PubMed ID: 29190513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface.
    Henderson RK; Parsons SA; Jefferson B
    Environ Sci Technol; 2008 Jul; 42(13):4883-8. PubMed ID: 18678021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process.
    Han M; Kim TI; Kim J
    Water Sci Technol; 2007; 56(10):109-15. PubMed ID: 18048983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface charge, micro-bubble size and particle size on removal efficiency of electro-flotation.
    Han MY; Kim MK; Ahn HJ
    Water Sci Technol; 2006; 53(7):127-32. PubMed ID: 16752773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and application of a quaternary phosphonium polymer coagulant to avoid N-nitrosamine formation.
    Zeng T; Pignatello JJ; Li RJ; Mitch WA
    Environ Sci Technol; 2014 Nov; 48(22):13392-401. PubMed ID: 25322258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding variability in algal solid-liquid separation process outcomes by manipulating extracellular protein-carbohydrate interactions.
    Rao NRH; Granville AM; Henderson RK
    Water Res; 2021 Feb; 190():116747. PubMed ID: 33385876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology.
    Wang JP; Chen YZ; Wang Y; Yuan SJ; Yu HQ
    Water Res; 2011 Nov; 45(17):5633-40. PubMed ID: 21920576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions).
    Kiuru HJ
    Water Sci Technol; 2001; 43(8):1-7. PubMed ID: 11394261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil-water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China.
    Chen HX; Tang HM; Duan M; Liu YG; Liu M; Zhao F
    Environ Technol; 2015; 36(9-12):1373-80. PubMed ID: 25420517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating dissolved air flotation performance with cyanobacterial cells and filaments.
    Teixeira MR; Sousa V; Rosa MJ
    Water Res; 2010 Jun; 44(11):3337-44. PubMed ID: 20362317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypersaline produced water clarification by dissolved air flotation and sedimentation with ultrashort residence times.
    Abada B; Joag S; Sharma R; Chellam S
    Water Res; 2022 Nov; 226():119241. PubMed ID: 36279612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal efficiency of dissolved organic matter from secondary effluent by coagulation-flocculation processes.
    Guimarães NR; Dörr F; Marques RO; Pinto E; Ferreira Filho SS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(2):161-170. PubMed ID: 33378253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced separation of water quality parameters in the DAF (Dissolved Air Flotation) system using ozone.
    Lee BH; Song WC; Kim HY; Kim JH
    Water Sci Technol; 2007; 56(10):149-55. PubMed ID: 18048988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot testing of dissolved air flotation (DAF) in a highly effective coagulation-flocculation integrated (FRD) system.
    Wang Y; Guo J; Tang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Jan; 37(1):95-111. PubMed ID: 11846273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental characteristics of bubbles and ramifications for the flotation process.
    Dockko S; Han MY
    Water Sci Technol; 2004; 50(12):207-14. PubMed ID: 15686023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles.
    Kwak DH; Kim MS
    Water Sci Technol; 2015; 72(5):762-9. PubMed ID: 26287835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and breakage of flocs using dual polymers.
    Yukselen MA; Gregory J; Soyer E
    Water Sci Technol; 2006; 53(7):217-23. PubMed ID: 16752784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2018 Jun; 137():57-63. PubMed ID: 29533811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.