These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24934557)

  • 81. Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae).
    Nascimento ÍF; Guimarães ATB; Ribeiro F; Rodrigues ASL; Estrela FN; Luz TMD; Malafaia G
    Environ Pollut; 2021 Aug; 283():117054. PubMed ID: 33848902
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Monitoring the morphological integrity of neotropical anurans.
    Borges RE; de Souza Santos LR; Assis RA; Benvindo-Souza M; Franco-Belussi L; de Oliveira C
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2623-2634. PubMed ID: 30474816
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Amphibian Toxicology: A Rich But Underappreciated Model for Ecotoxicology Research.
    Langlois VS
    Arch Environ Contam Toxicol; 2021 May; 80(4):661-662. PubMed ID: 33839894
    [No Abstract]   [Full Text] [Related]  

  • 84. Low temperatures lead to higher toxicity of the fungicide folpet to larval stages of Rana temporaria and Bufotes viridis.
    Leeb C; Schuler L; Brühl CA; Theissinger K
    PLoS One; 2022; 17(8):e0258631. PubMed ID: 35951548
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline?
    Brühl CA; Schmidt T; Pieper S; Alscher A
    Sci Rep; 2013; 3():1135. PubMed ID: 23350038
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effects of chemical pollutants on reproductive and developmental processes in Italian amphibians.
    Pinelli C; Santillo A; Chieffi Baccari G; Falvo S; Di Fiore MM
    Mol Reprod Dev; 2019 Oct; 86(10):1324-1332. PubMed ID: 31111596
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Non-destructive methods to assess health of wild tropical frogs (túngara frogs: Engystomops pustulosus) in Trinidad reveal negative impacts of agricultural land.
    Orton F; Mangan S; Newton L; Marianes A
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):40262-40272. PubMed ID: 35461421
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Colouration in amphibians as a reflection of nutritional status: The case of tree frogs in Costa Rica.
    Brenes-Soto A; Dierenfeld ES; Janssens GPJ
    PLoS One; 2017; 12(8):e0182020. PubMed ID: 28837604
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Estimating dermal contact soil exposure for amphibians.
    Purucker ST; Snyder MN; Glinski DA; Van Meter RJ; Garber K; Chelsvig EA; Cyterski MJ; Sinnathamby S; Paulukonis EA; Henderson WM
    Integr Environ Assess Manag; 2023 Jan; 19(1):9-16. PubMed ID: 35412009
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The Atrazine Saga and its Importance to the Future of Toxicology, Science, and Environmental and Human Health.
    Rohr JR
    Environ Toxicol Chem; 2021 Jun; 40(6):1544-1558. PubMed ID: 33999476
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Proximity to agriculture is correlated with pesticide tolerance: evidence for the evolution of amphibian resistance to modern pesticides.
    Cothran RD; Brown JM; Relyea RA
    Evol Appl; 2013 Jul; 6(5):832-841. PubMed ID: 29387169
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs.
    Mann RM; Bidwell JR
    Environ Pollut; 2001; 114(2):195-205. PubMed ID: 11504342
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Risk assessment considerations for plant protection products and terrestrial life-stages of amphibians.
    Weltje L; Ufer A; Hamer M; Sowig P; Demmig S; Dechet F
    Sci Total Environ; 2018 Sep; 636():500-511. PubMed ID: 29715655
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Impact of plant cover on fitness and behavioural traits of captive red-eyed tree frogs (Agalychnis callidryas).
    Michaels CJ; Antwis RE; Preziosi RF
    PLoS One; 2014; 9(4):e95207. PubMed ID: 24740289
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Standardizing acute toxicity data for use in ecotoxicology models: influence of test type, life stage, and concentration reporting.
    Raimondo S; Vivian DN; Barron MG
    Ecotoxicology; 2009 Oct; 18(7):918-28. PubMed ID: 19533342
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Potential effects of herbicides on native amphibians: a hierarchical approach to ecotoxicology research and risk assessment.
    Thompson DG
    Environ Toxicol Chem; 2004 Apr; 23(4):813-4. PubMed ID: 15095874
    [No Abstract]   [Full Text] [Related]  

  • 97. Evolved pesticide tolerance influences susceptibility to parasites in amphibians.
    Hua J; Wuerthner VP; Jones DK; Mattes B; Cothran RD; Relyea RA; Hoverman JT
    Evol Appl; 2017 Sep; 10(8):802-812. PubMed ID: 29151872
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Understanding of the impact of chemicals on amphibians: a meta-analytic review.
    Egea-Serrano A; Relyea RA; Tejedo M; Torralva M
    Ecol Evol; 2012 Jul; 2(7):1382-97. PubMed ID: 22957147
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Phylogeny meets ecotoxicology: evolutionary patterns of sensitivity to a common insecticide.
    Hammond JI; Jones DK; Stephens PR; Relyea RA
    Evol Appl; 2012 Sep; 5(6):593-606. PubMed ID: 23028400
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Incorporating evolutionary insights to improve ecotoxicology for freshwater species.
    Brady SP; Richardson JL; Kunz BK
    Evol Appl; 2017 Sep; 10(8):829-838. PubMed ID: 29151874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.