BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24934636)

  • 21. Computational detection and suppression of sequence-specific off-target phenotypes from whole genome RNAi screens.
    Zhong R; Kim J; Kim HS; Kim M; Lum L; Levine B; Xiao G; White MA; Xie Y
    Nucleic Acids Res; 2014 Jul; 42(13):8214-22. PubMed ID: 24972830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing effective siRNAs with off-target control.
    Snøve O; Nedland M; Fjeldstad SH; Humberset H; Birkeland OR; Grünfeld T; Saetrom P
    Biochem Biophys Res Commun; 2004 Dec; 325(3):769-73. PubMed ID: 15541356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA Interference (RNAi) Screening in
    Heigwer F; Port F; Boutros M
    Genetics; 2018 Mar; 208(3):853-874. PubMed ID: 29487145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.
    Ohnishi Y; Tamura Y; Yoshida M; Tokunaga K; Hohjoh H
    PLoS One; 2008 May; 3(5):e2248. PubMed ID: 18493311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vigilance and validation: Keys to success in RNAi screening.
    Sigoillot FD; King RW
    ACS Chem Biol; 2011 Jan; 6(1):47-60. PubMed ID: 21142076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics.
    Suzuki HI; Spengler RM; Grigelioniene G; Kobayashi T; Sharp PA
    Nat Genet; 2018 May; 50(5):657-661. PubMed ID: 29662165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guidelines for the optimal design of miRNA-based shRNAs.
    Bofill-De Ros X; Gu S
    Methods; 2016 Jul; 103():157-66. PubMed ID: 27083402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of short hairpin RNAs using the compact architecture of retroviral microRNA genes.
    Burke JM; Kincaid RP; Aloisio F; Welch N; Sullivan CS
    Nucleic Acids Res; 2017 Sep; 45(17):e154. PubMed ID: 28973449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. miRSeq: a user-friendly standalone toolkit for sequencing quality evaluation and miRNA profiling.
    Pan CT; Tsai KW; Hung TM; Lin WC; Pan CY; Yu HR; Li SC
    Biomed Res Int; 2014; 2014():462135. PubMed ID: 25114903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. E-RNAi: a web application to design optimized RNAi constructs.
    Arziman Z; Horn T; Boutros M
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W582-8. PubMed ID: 15980541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. sIR: siRNA Information Resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database.
    Shah JK; Garner HR; White MA; Shames DS; Minna JD
    BMC Bioinformatics; 2007 May; 8():178. PubMed ID: 17540034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington's disease.
    Boudreau RL; Spengler RM; Davidson BL
    Mol Ther; 2011 Dec; 19(12):2169-77. PubMed ID: 21952166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and validation of siRNAs and shRNAs.
    Tilesi F; Fradiani P; Socci V; Willems D; Ascenzioni F
    Curr Opin Mol Ther; 2009 Apr; 11(2):156-64. PubMed ID: 19330721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs.
    Olson A; Sheth N; Lee JS; Hannon G; Sachidanandam R
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D153-7. PubMed ID: 16381835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys.
    Mockenhaupt S; Grosse S; Rupp D; Bartenschlager R; Grimm D
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4007-16. PubMed ID: 26170322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering Seed Sequence Based Off-Target Effects in a Large-Scale RNAi Reporter Screen for E-Cadherin Expression.
    Adams R; Nicke B; Pohlenz HD; Sohler F
    PLoS One; 2015; 10(9):e0137640. PubMed ID: 26361354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional identification of optimized RNAi triggers using a massively parallel sensor assay.
    Fellmann C; Zuber J; McJunkin K; Chang K; Malone CD; Dickins RA; Xu Q; Hengartner MO; Elledge SJ; Hannon GJ; Lowe SW
    Mol Cell; 2011 Mar; 41(6):733-46. PubMed ID: 21353615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanisms of RNA-triggered gene silencing machineries.
    Li Z; Rana TM
    Acc Chem Res; 2012 Jul; 45(7):1122-31. PubMed ID: 22304792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells.
    Jaiswal A; Peddinti G; Akimov Y; Wennerberg K; Kuznetsov S; Tang J; Aittokallio T
    Genome Med; 2017 Jun; 9(1):51. PubMed ID: 28569207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs.
    Boudreau RL; Monteys AM; Davidson BL
    RNA; 2008 Sep; 14(9):1834-44. PubMed ID: 18697922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.