BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24934676)

  • 1. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.
    Pedras MS; Yaya EE
    Chem Biodivers; 2014 Jun; 11(6):910-8. PubMed ID: 24934676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are.
    Pedras MS; Hossain S
    Phytochemistry; 2011 Dec; 72(18):2308-16. PubMed ID: 21920565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
    Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ
    Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover.
    Cárdenas PD; Landtved JP; Larsen SH; Lindegaard N; Wøhlk S; Jensen KR; Pattison DI; Burow M; Bak S; Crocoll C; Agerbirk N
    Phytochemistry; 2023 Sep; 213():113742. PubMed ID: 37269935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity.
    Pedras MS; Montaut S; Suchy M
    J Org Chem; 2004 Jun; 69(13):4471-6. PubMed ID: 15202903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity.
    Pedras MS; Sarwar MG; Suchy M; Adio AM
    Phytochemistry; 2006 Jul; 67(14):1503-9. PubMed ID: 16806330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucosinolates in Diplotaxis and Eruca leaves: diversity, taxonomic relations and applied aspects.
    D'Antuono LF; Elementi S; Neri R
    Phytochemistry; 2008 Jan; 69(1):187-99. PubMed ID: 17669448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket).
    Bennett RN; Rosa EA; Mellon FA; Kroon PA
    J Agric Food Chem; 2006 May; 54(11):4005-15. PubMed ID: 16719527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds.
    Pedras MSC; Okinyo-Owiti DP; Thoms K; Adio AM
    Phytochemistry; 2009 Jun; 70(9):1129-1138. PubMed ID: 19560792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first isocyanide of plant origin expands functional group diversity in cruciferous phytoalexins: synthesis, structure and bioactivity of isocyalexin A.
    Pedras MS; Yaya EE
    Org Biomol Chem; 2012 May; 10(18):3613-6. PubMed ID: 22495624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable incorporation of the first sulfur containing indole derivative: another piece in the biosynthetic puzzle of crucifer phytoalexins.
    Pedras MS; Okinyo DP
    Org Biomol Chem; 2008 Jan; 6(1):51-4. PubMed ID: 18075646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations.
    Bennett RN; Carvalho R; Mellon FA; Eagles J; Rosa EA
    J Agric Food Chem; 2007 Jan; 55(1):67-74. PubMed ID: 17199315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia).
    Bell L; Wagstaff C
    J Agric Food Chem; 2014 May; 62(20):4481-92. PubMed ID: 24773270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiproliferative Effect of Indole Phytoalexins.
    Chripkova M; Zigo F; Mojzis J
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27898039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling the biosynthetic puzzle of crucifer metabolites: indole-3-acetaldoxime is incorporated efficiently into phytoalexins but glucobrassicin is not.
    Pedras MS; Montaut S; Xu Y; Khan AQ; Loukaci A
    Chem Commun (Camb); 2001 Sep; (17):1572-3. PubMed ID: 12240387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum.
    Pedras MS; Ahiahonu PW
    J Chem Ecol; 2004 Nov; 30(11):2163-79. PubMed ID: 15672663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defense and signalling metabolites of the crucifer Erucastrum canariense: Synchronized abiotic induction of phytoalexins and galacto-oxylipins.
    Pedras MSC; To QH
    Phytochemistry; 2017 Jul; 139():18-24. PubMed ID: 28390240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress.
    Pedras MS; Zheng QA; Gadagi RS; Rimmer SR
    Phytochemistry; 2008 Feb; 69(4):894-910. PubMed ID: 18039546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite.
    Pedras MS; Hossain S; Snitynsky RB
    Phytochemistry; 2011 Feb; 72(2-3):199-206. PubMed ID: 21176925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phytoalexins from cultivated and wild crucifers: chemistry and biology.
    Pedras MS; Yaya EE; Glawischnig E
    Nat Prod Rep; 2011 Aug; 28(8):1381-405. PubMed ID: 21681321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.