These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24934718)

  • 1. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.
    Banno T; Miura S; Kuroha R; Toyota T
    Langmuir; 2013 Jun; 29(25):7689-96. PubMed ID: 23706080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotion Mode of Micrometer-Sized Oil Droplets in Solutions of Cationic Surfactants Having Ester or Ether Linkages.
    Hirono A; Toyota T; Asakura K; Banno T
    Langmuir; 2018 Jul; 34(26):7821-7826. PubMed ID: 29878786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants.
    Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T
    Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-propelled oil droplets consuming "fuel" surfactant.
    Toyota T; Maru N; Hanczyc MM; Ikegami T; Sugawara T
    J Am Chem Soc; 2009 Apr; 131(14):5012-3. PubMed ID: 19351200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
    Banno T; Toyota T
    Langmuir; 2015 Jun; 31(25):6943-7. PubMed ID: 26073277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Sensitive Controlled Motion of Micrometer-sized Oil Droplets in a Solution of Surfactants Containing Fumaric Acid Derivatives.
    Kaburagi M; Kojima T; Asakura K; Banno T
    J Oleo Sci; 2022 Sep; 71(9):1319-1326. PubMed ID: 35965092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phototactic behavior of self-propelled micrometer-sized oil droplets in a surfactant solution.
    Kaneko S; Asakura K; Banno T
    Chem Commun (Camb); 2017 Feb; 53(14):2237-2240. PubMed ID: 28144652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-division of self-propelled oil droplets through acetal formation.
    Banno T; Kuroha R; Miura S; Toyota T
    Soft Matter; 2015 Feb; 11(8):1459-63. PubMed ID: 25601308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.
    Banno T; Asami A; Ueno N; Kitahata H; Koyano Y; Asakura K; Toyota T
    Sci Rep; 2016 Aug; 6():31292. PubMed ID: 27503336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Propelled Oil Droplets and Their Morphological Change to Giant Vesicles Induced by a Surfactant Solution at Low pH.
    Banno T; Tanaka Y; Asakura K; Toyota T
    Langmuir; 2016 Sep; 32(37):9591-7. PubMed ID: 27580350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-propulsion of aluminum particle-coated Janus droplet in alkaline solution.
    Li M; Li D
    J Colloid Interface Sci; 2018 Dec; 532():657-665. PubMed ID: 30121518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH.
    Ban T; Yamagami T; Nakata H; Okano Y
    Langmuir; 2013 Feb; 29(8):2554-61. PubMed ID: 23369012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propelled droplets for extracting rare-earth metal ions.
    Ban T; Tani K; Nakata H; Okano Y
    Soft Matter; 2014 Sep; 10(33):6316-20. PubMed ID: 25029997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects.
    Noguchi M; Yamada M; Sawada H
    RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.
    Ueno N; Banno T; Asami A; Kazayama Y; Morimoto Y; Osaki T; Takeuchi S; Kitahata H; Toyota T
    Langmuir; 2017 Jun; 33(22):5393-5397. PubMed ID: 28502179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional and velocity control of active droplets using a rigid-frame.
    Yamada M; Shigemune H; Maeda S; Sawada H
    RSC Adv; 2019 Dec; 9(69):40523-40530. PubMed ID: 35542662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets.
    Zhao J; Santa Chalarca CF; Nunes JK; Stone HA; Emrick T
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000334. PubMed ID: 32671939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.