These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
794 related articles for article (PubMed ID: 24934970)
1. Turn-on electrochemiluminescence sensing of Cd(2+) based on CdTe quantum dots. Song H; Yang M; Fan X; Wang H Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():130-3. PubMed ID: 24934970 [TBL] [Abstract][Full Text] [Related]
2. Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods. Wang J; Jiang X; Han H Biosens Bioelectron; 2016 Aug; 82():26-31. PubMed ID: 27031188 [TBL] [Abstract][Full Text] [Related]
3. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Zhu HY; Ding SN Biosens Bioelectron; 2019 Jun; 134():109-116. PubMed ID: 30965162 [TBL] [Abstract][Full Text] [Related]
4. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
5. Electrochemiluminescence quenching by CdTe quantum dots through energy scavenging for ultrasensitive detection of antigen. Shan Y; Xu JJ; Chen HY Chem Commun (Camb); 2010 Jul; 46(28):5079-81. PubMed ID: 20559593 [TBL] [Abstract][Full Text] [Related]
6. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. Hua L; Han H; Zhang X Talanta; 2009 Mar; 77(5):1654-9. PubMed ID: 19159779 [TBL] [Abstract][Full Text] [Related]
7. Versatile electrochemiluminescent biosensor for protein-nucleic acid interaction based on the unique quenching effect of deoxyguanosine-5'-phosphate on electrochemiluminescence of CdTe/ZnS quantum dots. Zhao P; Zhou L; Nie Z; Xu X; Li W; Huang Y; He K; Yao S Anal Chem; 2013 Jul; 85(13):6279-86. PubMed ID: 23742234 [TBL] [Abstract][Full Text] [Related]
8. Enhanced electrochemiluminescence from reduced graphene oxide-CdTe quantum dots for highly selective determination of copper ion. Hu FX; Wang J; Chen S; Rao Q Luminescence; 2019 Nov; 34(7):666-672. PubMed ID: 31243864 [TBL] [Abstract][Full Text] [Related]
9. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex. Fu X; Tan X; Yuan R; Chen S Biosens Bioelectron; 2017 Apr; 90():61-68. PubMed ID: 27883960 [TBL] [Abstract][Full Text] [Related]
10. In situ energy transfer quenching of quantum dot electrochemiluminescence for sensitive detection of cancer biomarkers. Yang M; Chen Y; Xiang Y; Yuan R; Chai Y Biosens Bioelectron; 2013 Dec; 50():393-8. PubMed ID: 23891869 [TBL] [Abstract][Full Text] [Related]
11. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Han H; Sheng Z; Liang J Anal Chim Acta; 2007 Jul; 596(1):73-8. PubMed ID: 17616242 [TBL] [Abstract][Full Text] [Related]
12. A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification. Yu YQ; Zhang HY; Chai YQ; Yuan R; Zhuo Y Biosens Bioelectron; 2016 Nov; 85():8-15. PubMed ID: 27148827 [TBL] [Abstract][Full Text] [Related]
13. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Shan Y; Xu JJ; Chen HY Nanoscale; 2011 Jul; 3(7):2916-23. PubMed ID: 21633752 [TBL] [Abstract][Full Text] [Related]
14. An improved method for ratiometric fluorescence detection of pH and Cd2+ using fluorescein isothiocyanate-quantum dots conjugates. Gui R; An X; Huang W Anal Chim Acta; 2013 Mar; 767():134-40. PubMed ID: 23452797 [TBL] [Abstract][Full Text] [Related]
15. An electrochemiluminescence sensor for determination of durabolin based on CdTe QD films by layer-by-layer self-assembly. Wan F; Yu J; Yang P; Ge S; Yan M Anal Bioanal Chem; 2011 May; 400(3):807-14. PubMed ID: 21365349 [TBL] [Abstract][Full Text] [Related]
16. Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Hu X; Wang R; Ding Y; Zhang X; Jin W Talanta; 2010 Mar; 80(5):1737-43. PubMed ID: 20152405 [TBL] [Abstract][Full Text] [Related]
17. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots. Tashkhourian J; Absalan G; Jafari M; Zare S Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():119-25. PubMed ID: 26204505 [TBL] [Abstract][Full Text] [Related]
18. Determination of 2-methoxyestradiol by chemiluminescence based on luminol-KMnO4-CdTe quantum dots system. Du B; Wang T; Han S; Cao X; Qu T; Zhao F; Guo X; Yao H Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():149-54. PubMed ID: 25439823 [TBL] [Abstract][Full Text] [Related]
19. A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Wang Q; Li S; Li J Anal Bioanal Chem; 2018 Aug; 410(21):5165-5172. PubMed ID: 29922862 [TBL] [Abstract][Full Text] [Related]
20. A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework-reduced graphene oxide-CdTe quantum dot hybrids. Hu X; Zhang H; Chen S; Yuan R; You J Anal Bioanal Chem; 2018 Dec; 410(30):7881-7890. PubMed ID: 30283997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]