BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 24934999)

  • 1. Regulation of nitrogenase by reversible mono-ADP-ribosylation.
    Moure VR; Costa FF; Cruz LM; Pedrosa FO; Souza EM; Li XD; Winkler F; Huergo LF
    Curr Top Microbiol Immunol; 2015; 384():89-106. PubMed ID: 24934999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72.
    Oetjen J; Reinhold-Hurek B
    J Bacteriol; 2009 Jun; 191(11):3726-35. PubMed ID: 19346301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term regulation of nitrogenase activity by NH4+ in Rhodobacter capsulatus: multiple in vivo nitrogenase responses to NH4+ addition.
    Yakunin AF; Hallenbeck PC
    J Bacteriol; 1998 Dec; 180(23):6392-5. PubMed ID: 9829952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP-ribosyltransferases, an update on function and nomenclature.
    Lüscher B; Ahel I; Altmeyer M; Ashworth A; Bai P; Chang P; Cohen M; Corda D; Dantzer F; Daugherty MD; Dawson TM; Dawson VL; Deindl S; Fehr AR; Feijs KLH; Filippov DV; Gagné JP; Grimaldi G; Guettler S; Hoch NC; Hottiger MO; Korn P; Kraus WL; Ladurner A; Lehtiö L; Leung AKL; Lord CJ; Mangerich A; Matic I; Matthews J; Moldovan GL; Moss J; Natoli G; Nielsen ML; Niepel M; Nolte F; Pascal J; Paschal BM; Pawłowski K; Poirier GG; Smith S; Timinszky G; Wang ZQ; Yélamos J; Yu X; Zaja R; Ziegler M
    FEBS J; 2022 Dec; 289(23):7399-7410. PubMed ID: 34323016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for DarT ADP-ribosylation of a DNA base.
    Schuller M; Butler RE; Ariza A; Tromans-Coia C; Jankevicius G; Claridge TDW; Kendall SL; Goh S; Stewart GR; Ahel I
    Nature; 2021 Aug; 596(7873):597-602. PubMed ID: 34408320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TARG1 protects against toxic DNA ADP-ribosylation.
    Tromans-Coia C; Sanchi A; Moeller GK; Timinszky G; Lopes M; Ahel I
    Nucleic Acids Res; 2021 Oct; 49(18):10477-10492. PubMed ID: 34508355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-ribosylation: new facets of an ancient modification.
    Palazzo L; Mikoč A; Ahel I
    FEBS J; 2017 Sep; 284(18):2932-2946. PubMed ID: 28383827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of bacterial ubiquitin ADP-ribosyltransferase CteC reveals a substrate-recruiting insertion.
    Zhang Z; Rondon-Cordero HM; Das C
    J Biol Chem; 2024 Feb; 300(2):105604. PubMed ID: 38159861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function.
    Weixler L; Schäringer K; Momoh J; Lüscher B; Feijs KLH; Žaja R
    Nucleic Acids Res; 2021 Apr; 49(7):3634-3650. PubMed ID: 33693930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of mouse ADP-ribosylhydrolase 3 (mARH3).
    Mueller-Dieckmann C; Kernstock S; Mueller-Dieckmann J; Weiss MS; Koch-Nolte F
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Mar; 64(Pt 3):156-62. PubMed ID: 18323597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning method to predict bacterial ADP-ribosyltransferase toxins.
    Zheng D; Zhou S; Chen L; Pang G; Yang J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38885365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular Mono-ADP-Ribosylation in Signaling and Disease.
    Bütepage M; Eckei L; Verheugd P; Lüscher B
    Cells; 2015 Sep; 4(4):569-95. PubMed ID: 26426055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism.
    Boyd ES; Costas AM; Hamilton TL; Mus F; Peters JW
    J Bacteriol; 2015 May; 197(9):1690-9. PubMed ID: 25733617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies.
    Catara G; Caggiano R; Palazzo L
    Pathogens; 2023 Feb; 12(2):. PubMed ID: 36839512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apprehending the NAD
    Iyer LM; Burroughs AM; Anantharaman V; Aravind L
    Viruses; 2022 Sep; 14(9):. PubMed ID: 36146784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Analyses of Proteome and Acetylome in
    Nisar A; Gongye X; Huang Y; Khan S; Chen M; Wu B; He M
    Front Microbiol; 2021; 12():740555. PubMed ID: 34803957
    [No Abstract]   [Full Text] [Related]  

  • 17. ADP-ribosylation systems in bacteria and viruses.
    Mikolčević P; Hloušek-Kasun A; Ahel I; Mikoč A
    Comput Struct Biotechnol J; 2021; 19():2366-2383. PubMed ID: 34025930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Posttranslational Regulation of Glutamine Synthetase for Controllable Ammonia Production in the Plant Symbiont Azospirillum brasilense.
    Schnabel T; Sattely E
    Appl Environ Microbiol; 2021 Jun; 87(14):e0058221. PubMed ID: 33962983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Protein-Protein Interaction Network Reveals a Novel Role of the Signal Transduction Protein PII in the Control of c-di-GMP Homeostasis in Azospirillum brasilense.
    Gerhardt ECM; Parize E; Gravina F; Pontes FLD; Santos ARS; Araújo GAT; Goedert AC; Urbanski AH; Steffens MBR; Chubatsu LS; Pedrosa FO; Souza EM; Forchhammer K; Ganusova E; Alexandre G; de Souza GA; Huergo LF
    mSystems; 2020 Nov; 5(6):. PubMed ID: 33144311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of
    Hu L; Yang Y; Yan X; Zhang T; Xiang J; Gao Z; Chen Y; Yang S; Fei Q
    Front Bioeng Biotechnol; 2020; 8():263. PubMed ID: 32318556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.