These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24935005)

  • 1. Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge.
    Lin Y; Ma X; Yu Z; Cao Y
    Bioresour Technol; 2014 Aug; 166():444-50. PubMed ID: 24935005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-isothermal thermogravimetric analysis of oil-palm solid wastes.
    Luangkiattikhun P; Tangsathitkulchai C; Tangsathitkulchai M
    Bioresour Technol; 2008 Mar; 99(5):986-97. PubMed ID: 17451942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR.
    Liu G; Liao Y; Ma X
    Waste Manag; 2017 Mar; 61():315-326. PubMed ID: 28161337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).
    Idris SS; Abd Rahman N; Ismail K; Alias AB; Abd Rashid Z; Aris MJ
    Bioresour Technol; 2010 Jun; 101(12):4584-92. PubMed ID: 20153633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Components of oil sludge and their influence on pyrolysis behaviors].
    Song W; Liu JG; Nie YF
    Huan Jing Ke Xue; 2008 Jul; 29(7):2063-7. PubMed ID: 18828401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies.
    Lee XJ; Lee LY; Gan S; Thangalazhy-Gopakumar S; Ng HK
    Bioresour Technol; 2017 Jul; 236():155-163. PubMed ID: 28399419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis.
    Fang S; Yu Z; Lin Y; Lin Y; Fan Y; Liao Y; Ma X
    Bioresour Technol; 2016 Jun; 209():265-72. PubMed ID: 26985626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.
    Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X
    Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.
    Zhou X; Jia H; Qu C; Fan D; Wang C
    Environ Technol; 2017 Feb; 38(3):361-369. PubMed ID: 27242020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.
    Liu G; Song H; Wu J
    Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study on synergistic effects in co-pyrolysis of tobacco stalk with polymer wastes: Thermal behavior, gas formation, and kinetics.
    Chen R; Zhang J; Lun L; Li Q; Zhang Y
    Bioresour Technol; 2019 Nov; 292():121970. PubMed ID: 31421590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.
    Çepelioğullar Ö; Pütün AE
    Waste Manag Res; 2014 Oct; 32(10):971-9. PubMed ID: 25062939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.
    Zaafouri K; Ben Hassen Trabelsi A; Krichah S; Ouerghi A; Aydi A; Claumann CA; André Wüst Z; Naoui S; Bergaoui L; Hamdi M
    Bioresour Technol; 2016 May; 207():387-98. PubMed ID: 26897417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermal behaviour of the co-combustion between paper sludge and rice straw.
    Xie Z; Ma X
    Bioresour Technol; 2013 Oct; 146():611-618. PubMed ID: 23973983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR.
    Zhao R; Qin J; Chen T; Wang L; Wu J
    Waste Manag; 2020 Oct; 116():91-99. PubMed ID: 32799100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.
    Zhou H; Long Y; Meng A; Li Q; Zhang Y
    Waste Manag; 2015 Apr; 38():194-200. PubMed ID: 25680236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.
    Peng X; Ma X; Xu Z
    Bioresour Technol; 2015 Mar; 180():288-95. PubMed ID: 25618498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ultrasonic treatment on the pyrolysis characteristics and kinetics of waste activated sludge.
    Jia H; Liu B; Zhang X; Chen J; Ren W
    Environ Res; 2020 Apr; 183():109250. PubMed ID: 32088608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics, kinetics, infrared analysis and process optimization of co-pyrolysis of waste tires and oily sludge.
    Xu G; Cai X; Wang S; Fang B; Wang H; Zhu Y
    J Environ Manage; 2022 Aug; 316():115278. PubMed ID: 35576713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.