BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 24935023)

  • 1. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.
    Åkerström AM; Mortensen LM; Rusten B; Gislerød HR
    J Environ Manage; 2014 Nov; 144():118-24. PubMed ID: 24935023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with
    Zieliński M; Dębowski M; Szwaja S; Kisielewska M
    Water Environ Res; 2018 Feb; 90(2):155-163. PubMed ID: 28766484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorella pyrenoidosa cultivation in outdoors using the diluted anaerobically digested activated sludge.
    Tan XB; Yang LB; Zhang YL; Zhao FC; Chu HQ; Guo J
    Bioresour Technol; 2015 Dec; 198():340-50. PubMed ID: 26407348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The growth and nutrient removal properties of heterotrophic microalgae Chlorella sorokiniana in simulated wastewater containing volatile fatty acids.
    Lu T; Su K; Ma G; Jia C; Li J; Zhao Q; Song M; Xu C; Song X
    Chemosphere; 2024 Jun; 358():142270. PubMed ID: 38719126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater.
    Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM
    Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of nutrients from fish sludge to enhance the growth of microalga Chlorella sorokiniana CMBB276.
    Lian J; He Y; Wang L; Liu Y; Wang K; Sunde J; Rebours C; Liu H; Zhu X; Han D; Hu Q; Li M
    Mar Pollut Bull; 2024 Jun; 203():116421. PubMed ID: 38713927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closing Domestic Nutrient Cycles Using Microalgae.
    Vasconcelos Fernandes T; Shrestha R; Sui Y; Papini G; Zeeman G; Vet LE; Wijffels RH; Lamers P
    Environ Sci Technol; 2015 Oct; 49(20):12450-6. PubMed ID: 26389714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique.
    Van Wagenen J; Pape ML; Angelidaki I
    Water Res; 2015 May; 75():301-11. PubMed ID: 25792276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy.
    Rusten B; Sahu AK
    Water Sci Technol; 2011; 64(6):1195-201. PubMed ID: 22214070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae cultivation and nutrients removal from sewage sludge after ozonizing in algal-bacteria system.
    Lei YJ; Tian Y; Zhang J; Sun L; Kong XW; Zuo W; Kong LC
    Ecotoxicol Environ Saf; 2018 Dec; 165():107-114. PubMed ID: 30193163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge.
    Lee SA; Lee N; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2019 Sep; 29(9):1434-1443. PubMed ID: 31434363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp.
    Wang C; Yu X; Lv H; Yang J
    J Environ Biol; 2013 Apr; 34(2 Spec No):421-5. PubMed ID: 24620613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.
    Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ
    Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water.
    Renuka N; Sood A; Ratha SK; Prasanna R; Ahluwalia AS
    Int J Phytoremediation; 2013; 15(8):789-800. PubMed ID: 23819275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake.
    Zhang Q; Wang T; Hong Y
    Water Sci Technol; 2014; 70(4):712-9. PubMed ID: 25116503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris.
    Alketife AM; Judd S; Znad H
    Environ Technol; 2017 Jan; 38(1):94-102. PubMed ID: 27152999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition.
    Tan XB; Meng J; Tang Z; Yang LB; Zhang WW
    Chemosphere; 2020 Apr; 244():125509. PubMed ID: 31812770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
    Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outdoor cultures of Chlorella pyrenoidosa in the effluent of anaerobically digested activated sludge: The effects of pH and free ammonia.
    Tan XB; Zhang YL; Yang LB; Chu HQ; Guo J
    Bioresour Technol; 2016 Jan; 200():606-15. PubMed ID: 26547810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.