BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24935118)

  • 1. Spatial velocity distributions in pulse-wave propagation based on fluid-structure interaction.
    He F; Hua L; Gao LJ
    J Biol Phys; 2014 Sep; 40(4):325-34. PubMed ID: 24935118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical modeling of wave propagation phenomena: experimental determination of pulse wave velocity in viscous fluid-filled elastic tubes in a gravitation field.
    Žikić D; Stojadinović B; Nestorović Z
    Eur Biophys J; 2019 Jul; 48(5):407-411. PubMed ID: 31201474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube.
    Stojadinović B; Tenne T; Zikich D; Rajković N; Milošević N; Lazović B; Žikić D
    J Biomech; 2015 Nov; 48(15):3969-3974. PubMed ID: 26454712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Investigation of Pulse Wave Propagation in Arteries Using Fluid Structure Interaction Capabilities.
    Elkenani H; Al-Bahkali E; Souli M
    Comput Math Methods Med; 2017; 2017():4198095. PubMed ID: 29147132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.
    Lillie JS; Liberson AS; Mix D; Schwarz KQ; Chandra A; Phillips DB; Day SW; Borkholder DA
    Cardiovasc Eng Technol; 2015 Mar; 6(1):49-58. PubMed ID: 26577102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical evaluation of blood viscosity affecting pulse wave propagation in a fluid-structure interaction model.
    He F; Hua L; Gao LJ
    Biomed Tech (Berl); 2015 Feb; 60(1):11-5. PubMed ID: 25720033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical validation of pulse wave propagation: effects of arterial length.
    He F
    Australas Phys Eng Sci Med; 2013 Dec; 36(4):423-9. PubMed ID: 24243535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube.
    Painter PR
    Theor Biol Med Model; 2008 Jul; 5():15. PubMed ID: 18664288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network.
    Brault A; Dumas L; Lucor D
    Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27943622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Pulse Wave Propagation Through a Stenotic Artery With Fluid Structure Interaction: A Validation Study Using Ultrasound Pulse Wave Imaging.
    Gatti V; Nauleau P; Karageorgos GM; Shim JJ; Ateshian GA; Konofagou EE
    J Biomech Eng; 2021 Mar; 143(3):. PubMed ID: 33030208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation in a viscous fluid contained in an orthotropic elastic tube.
    Mirsky I
    Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse wave velocity as a diagnostic index: the pitfalls of tethering versus stiffening of the arterial wall.
    Hodis S; Zamir M
    J Biomech; 2011 Apr; 44(7):1367-73. PubMed ID: 21334629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse wave velocity as a diagnostic index: The effect of wall thickness.
    Hodis S
    Phys Rev E; 2018 Jun; 97(6-1):062401. PubMed ID: 30011489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels.
    Passerini T; Quaini A; Villa U; Veneziani A; Canic S
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1192-213. PubMed ID: 23798339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid and structure coupling analysis of the interaction between aqueous humor and iris.
    Wang W; Qian X; Song H; Zhang M; Liu Z
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):133. PubMed ID: 28155692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.