These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24935118)

  • 21. PWPSim: A new simulation tool of pulse wave propagation in the human arterial tree.
    Hanguang Xiao ; Butlin M; Tan I; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3672-3675. PubMed ID: 29060695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CardioFAN: open source platform for noninvasive assessment of pulse transit time and pulsatile flow in hyperelastic vascular networks.
    Seyed Vahedein Y; Liberson AS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1529-1548. PubMed ID: 31076923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid friction and wall viscosity of the 1D blood flow model.
    Wang XF; Nishi S; Matsukawa M; Ghigo A; Lagrée PY; Fullana JM
    J Biomech; 2016 Feb; 49(4):565-71. PubMed ID: 26862041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational fluid-structure interaction model of the blood flow in the healthy and varicose saphenous vein.
    Razaghi R; Karimi A; Rahmani S; Navidbakhsh M
    Vascular; 2016 Jun; 24(3):254-63. PubMed ID: 26123058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of tube ovalling on pressure wave propagation speed.
    Anderson A; Johnson GR
    Proc Inst Mech Eng H; 1990; 204(4):245-51. PubMed ID: 2090128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arterial viscoelasticity: role in the dependency of pulse wave velocity on heart rate in conduit arteries.
    Xiao H; Tan I; Butlin M; Li D; Avolio AP
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1185-H1194. PubMed ID: 28364019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A physics based approach to the pulse wave velocity prediction in compliant arterial segments.
    Liberson AS; Lillie JS; Day SW; Borkholder DA
    J Biomech; 2016 Oct; 49(14):3460-3466. PubMed ID: 27665351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mathematical model of flow in a liquid-filled visco-elastic tube.
    Pontrelli G
    Med Biol Eng Comput; 2002 Sep; 40(5):550-6. PubMed ID: 12452416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The assignment of velocity profiles in finite element simulations of pulsatile flow in arteries.
    Redaelli A; Boschetti F; Inzoli F
    Comput Biol Med; 1997 May; 27(3):233-47. PubMed ID: 9215485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The vibration of an artery-like tube conveying pulsatile fluid flow.
    Zhang YL; Reese JM; Gorman DG; Madhok R
    Proc Inst Mech Eng H; 2002; 216(1):1-11. PubMed ID: 11905556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Derivation of aortic distensibility and pulse wave velocity by image registration with a physics-based regularisation term.
    Barber DC; Valverde I; Shi Y; Brown A; Beerbaum P; Rodney Hose D
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):55-68. PubMed ID: 24123929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.