BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24935150)

  • 41. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models.
    Sandino C; Lacroix D
    Biomech Model Mechanobiol; 2011 Jul; 10(4):565-76. PubMed ID: 20865437
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering.
    Boccaccio A; Ballini A; Pappalettere C; Tullo D; Cantore S; Desiate A
    Int J Biol Sci; 2011 Jan; 7(1):112-32. PubMed ID: 21278921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite element analysis of a personalized femoral scaffold with designed microarchitecture.
    Pandithevan P; Kumar GS
    Proc Inst Mech Eng H; 2010; 224(7):877-89. PubMed ID: 20839655
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering.
    Hoyer B; Bernhardt A; Heinemann S; Stachel I; Meyer M; Gelinsky M
    Biomacromolecules; 2012 Apr; 13(4):1059-66. PubMed ID: 22364350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering.
    Schipani R; Nolan DR; Lally C; Kelly DJ
    Connect Tissue Res; 2020 Mar; 61(2):174-189. PubMed ID: 31495233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction.
    Feng C; Xu YM; Fu Q; Zhu WD; Cui L; Chen J
    J Biomed Mater Res A; 2010 Jul; 94(1):317-25. PubMed ID: 20166222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.
    Bawolin NK; Li MG; Chen XB; Zhang WJ
    J Biomech Eng; 2010 Nov; 132(11):111001. PubMed ID: 21034142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling, Assessment, and Design of Porous Cells Based on Schwartz Primitive Surface for Bone Scaffolds.
    Ambu R; Morabito AE
    ScientificWorldJournal; 2019; 2019():7060847. PubMed ID: 31346324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties.
    Rainer A; Giannitelli SM; Accoto D; De Porcellinis S; Guglielmelli E; Trombetta M
    Ann Biomed Eng; 2012 Apr; 40(4):966-75. PubMed ID: 22109804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.
    Afshar M; Anaraki AP; Montazerian H; Kadkhodapour J
    J Mech Behav Biomed Mater; 2016 Sep; 62():481-494. PubMed ID: 27281165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds.
    Seyedraoufi ZS; Mirdamadi Sh
    J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a three-dimensional fiber deposition method.
    Sun Y; Finne-Wistrand A; Albertsson AC; Xing Z; Mustafa K; Hendrikson WJ; Grijpma DW; Moroni L
    J Biomed Mater Res A; 2012 Oct; 100(10):2739-49. PubMed ID: 22623412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering.
    Cahill S; Lohfeld S; McHugh PE
    J Mater Sci Mater Med; 2009 Jun; 20(6):1255-62. PubMed ID: 19199109
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds.
    Lu Y; Zhao W; Cui Z; Zhu H; Wu C
    J Mech Behav Biomed Mater; 2019 Nov; 99():56-65. PubMed ID: 31344523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.