BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24935158)

  • 1. Enhancement of cell ingrowth, proliferation, and early differentiation in a three-dimensional silicon carbide scaffold using low-intensity pulsed ultrasound.
    Wu L; Lin L; Qin YX
    Tissue Eng Part A; 2015 Jan; 21(1-2):53-61. PubMed ID: 24935158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal cycling effect on osteogenic differentiation of MC3T3-E1 cells loaded on 3D-porous Biphasic Calcium Phosphate (BCP) scaffolds for early osteogenesis.
    Sayed S; Faruq O; Hossain M; Im SB; Kim YS; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110027. PubMed ID: 31546388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytocompatibility of bio-inspired silicon carbide ceramics.
    López-Alvarez M; de Carlos A; González P; Serra J; León B
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):177-83. PubMed ID: 20737554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells.
    Ge M; Xue L; Nie T; Ma H; Zhang J
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.
    Pedraza CE; Marelli B; Chicatun F; McKee MD; Nazhat SN
    Tissue Eng Part A; 2010 Mar; 16(3):781-93. PubMed ID: 19778181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The integration of pore size and porosity distribution on Ti-6A1-4V scaffolds by 3D printing in the modulation of osteo-differentation.
    Wo J; Huang SS; Wu DY; Zhu J; Li ZZ; Yuan F
    J Appl Biomater Funct Mater; 2020; 18():2280800020934652. PubMed ID: 32936027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a multilayered chitosan-hydroxy-apatite porous composite enriched with fibronectin or an in vitro-generated bone-like extracellular matrix on proliferation and diferentiation of osteoblasts.
    Fernández MS; Arias JI; Martínez MJ; Saenz L; Neira-Carrillo A; Yazdani-Pedram M; Arias JL
    J Tissue Eng Regen Med; 2012 Jun; 6(6):497-504. PubMed ID: 21812117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite scaffolds for osteoblast growth and differentiation.
    Chen BQ; Kankala RK; Chen AZ; Yang DZ; Cheng XX; Jiang NN; Zhu K; Wang SB
    Int J Nanomedicine; 2017; 12():1877-1890. PubMed ID: 28331312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation.
    Tian Z; Huang L; Pei X; Chen J; Wang T; Yang T; Qin H; Sui L; Wang J
    Colloids Surf B Biointerfaces; 2017 Jul; 155():150-158. PubMed ID: 28419944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of porous bioactive SiC tissue engineering scaffold.
    El-Ghannam A; Greenier M; Johnson M; Marriott I
    J Biomed Mater Res A; 2020 Nov; 108(11):2162-2174. PubMed ID: 32319213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation.
    Tuzlakoglu K; Pashkuleva I; Rodrigues MT; Gomes ME; van Lenthe GH; Müller R; Reis RL
    J Biomed Mater Res A; 2010 Jan; 92(1):369-77. PubMed ID: 19191314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo.
    Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD
    Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility.
    Lee HY; Jin GZ; Shin US; Kim JH; Kim HW
    J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.