BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24935206)

  • 1. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro.
    Shimo T; Tachibana K; Saito K; Yoshida T; Tomita E; Waki R; Yamamoto T; Doi T; Inoue T; Kawakami J; Obika S
    Nucleic Acids Res; 2014 Jul; 42(12):8174-87. PubMed ID: 24935206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and In Vitro Evaluation of Splice-Switching Oligonucleotides Bearing Locked Nucleic Acids, Amido-Bridged Nucleic Acids, and Guanidine-Bridged Nucleic Acids.
    Shimo T; Nakatsuji Y; Tachibana K; Obika S
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of 2',4'-BNA/LNA-Based Oligonucleotides for Splicing Modulation In Vitro.
    Shimo T; Obika S
    Methods Mol Biol; 2018; 1828():395-411. PubMed ID: 30171556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Application of a Short (16-mer) Locked Nucleic Acid Splice-Switching Oligonucleotide for Dystrophin Production in Duchenne Muscular Dystrophy Myotubes.
    Carvalho C; Carmo-Fonseca M
    Methods Mol Biol; 2020; 2161():37-50. PubMed ID: 32681504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a tri-chromatic reporter cell line for the rapid and simple screening of splice-switching oligonucleotides targeting DMD exon 51 using high content screening.
    Shimo T; Tachibana K; Obika S
    PLoS One; 2018; 13(5):e0197373. PubMed ID: 29768479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic evaluation of 2'-Fluoro modified chimeric antisense oligonucleotide-mediated exon skipping in vitro.
    Chen S; Le BT; Chakravarthy M; Kosbar TR; Veedu RN
    Sci Rep; 2019 Apr; 9(1):6078. PubMed ID: 30988454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-l-Locked Nucleic Acid-Modified Antisense Oligonucleotides Induce Efficient Splice Modulation In Vitro.
    Raguraman P; Wang T; Ma L; Jørgensen PT; Wengel J; Veedu RN
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of exon skipping activity by reduction in the secondary structure content of LNA-based splice-switching oligonucleotides.
    Shimo T; Tachibana K; Kawawaki Y; Watahiki Y; Ishigaki T; Nakatsuji Y; Hara T; Kawakami J; Obika S
    Chem Commun (Camb); 2019 Jun; 55(48):6850-6853. PubMed ID: 31123731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.
    Takeshima Y; Yagi M; Matsuo M
    Methods Mol Biol; 2012; 867():131-41. PubMed ID: 22454059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Reprogramming of Human DMD Fibroblasts into Myotubes for In Vitro Evaluation of Antisense-Mediated Exon Skipping and Exons 45-55 Skipping Accompanied by Rescue of Dystrophin Expression.
    Lee JJA; Saito T; Duddy W; Takeda S; Yokota T
    Methods Mol Biol; 2018; 1828():141-150. PubMed ID: 30171539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells.
    Aartsma-Rus A; Kaman WE; Bremmer-Bout M; Janson AA; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Gene Ther; 2004 Sep; 11(18):1391-8. PubMed ID: 15229633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Short Locked Nucleic Acid-Modified 2'-O-Methyl Antisense Oligonucleotides for Efficient Exon-Skipping In Vitro.
    Le BT; Adams AM; Fletcher S; Wilton SD; Veedu RN
    Mol Ther Nucleic Acids; 2017 Dec; 9():155-161. PubMed ID: 29246294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of therapeutic splice-switching oligonucleotides.
    Disterer P; Kryczka A; Liu Y; Badi YE; Wong JJ; Owen JS; Khoo B
    Hum Gene Ther; 2014 Jul; 25(7):587-98. PubMed ID: 24826963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():165-171. PubMed ID: 30171541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of antisense oligonucleotide length on dystrophin exon skipping.
    Harding PL; Fall AM; Honeyman K; Fletcher S; Wilton SD
    Mol Ther; 2007 Jan; 15(1):157-66. PubMed ID: 17164787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.