BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 24935719)

  • 1. The neuronal activity-driven transcriptome.
    Benito E; Barco A
    Mol Neurobiol; 2015; 51(3):1071-88. PubMed ID: 24935719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and function of distal regulatory elements during neurogenesis and neuroplasticity.
    Thakurela S; Sahu SK; Garding A; Tiwari VK
    Genome Res; 2015 Sep; 25(9):1309-24. PubMed ID: 26170447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial transcriptomics: putting genome-wide expression on the map.
    Maynard KR; Jaffe AE; Martinowich K
    Neuropsychopharmacology; 2020 Jan; 45(1):232-233. PubMed ID: 31444395
    [No Abstract]   [Full Text] [Related]  

  • 4. cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression.
    Benito E; Valor LM; Jimenez-Minchan M; Huber W; Barco A
    J Neurosci; 2011 Dec; 31(50):18237-50. PubMed ID: 22171029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity.
    Kalita K; Kharebava G; Zheng JJ; Hetman M
    J Neurosci; 2006 Sep; 26(39):10020-32. PubMed ID: 17005865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex.
    Pulimood NS; Rodrigues WDS; Atkinson DA; Mooney SM; Medina AE
    J Neurosci; 2017 Jul; 37(28):6628-6637. PubMed ID: 28607167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic plasticity-regulated gene expression: a key event in the long-lasting changes of neuronal function.
    Tabuchi A
    Biol Pharm Bull; 2008 Mar; 31(3):327-35. PubMed ID: 18310887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction.
    Rudenko A; Dawlaty MM; Seo J; Cheng AW; Meng J; Le T; Faull KF; Jaenisch R; Tsai LH
    Neuron; 2013 Sep; 79(6):1109-1122. PubMed ID: 24050401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adult Deletion of SRF Increases Epileptogenesis and Decreases Activity-Induced Gene Expression.
    Kuzniewska B; Nader K; Dabrowski M; Kaczmarek L; Kalita K
    Mol Neurobiol; 2016 Apr; 53(3):1478-1493. PubMed ID: 25636686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes.
    Madabhushi R; Gao F; Pfenning AR; Pan L; Yamakawa S; Seo J; Rueda R; Phan TX; Yamakawa H; Pao PC; Stott RT; Gjoneska E; Nott A; Cho S; Kellis M; Tsai LH
    Cell; 2015 Jun; 161(7):1592-605. PubMed ID: 26052046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome and epigenome analysis of engram cells: Next-generation sequencing technologies in memory research.
    Fuentes-Ramos M; Alaiz-Noya M; Barco A
    Neurosci Biobehav Rev; 2021 Aug; 127():865-875. PubMed ID: 34097980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic Basis of Neuronal and Synaptic Plasticity.
    Karpova NN; Sales AJ; Joca SR
    Curr Top Med Chem; 2017; 17(7):771-793. PubMed ID: 27086781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide profiling of the activity-dependent hippocampal transcriptome.
    Hermey G; Mahlke C; Gutzmann JJ; Schreiber J; Blüthgen N; Kuhl D
    PLoS One; 2013; 8(10):e76903. PubMed ID: 24146943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome and epigenome analyses of vernalization in Arabidopsis thaliana.
    Xi Y; Park SR; Kim DH; Kim ED; Sung S
    Plant J; 2020 Aug; 103(4):1490-1502. PubMed ID: 32412129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CBP and SRF co-regulate dendritic growth and synaptic maturation.
    Del Blanco B; Guiretti D; Tomasoni R; Lopez-Cascales MT; Muñoz-Viana R; Lipinski M; Scandaglia M; Coca Y; Olivares R; Valor LM; Herrera E; Barco A
    Cell Death Differ; 2019 Nov; 26(11):2208-2222. PubMed ID: 30850733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.
    Chen X; Zhang K; Zhou L; Gao X; Wang J; Yao Y; He F; Luo Y; Yu Y; Li S; Cheng L; Sun YE
    Protein Cell; 2016 Mar; 7(3):175-86. PubMed ID: 26883038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a better understanding of cognitive behaviors regulated by gene expression downstream of activity-dependent transcription factors.
    Nonaka M; Kim R; Sharry S; Matsushima A; Takemoto-Kimura S; Bito H
    Neurobiol Learn Mem; 2014 Nov; 115():21-9. PubMed ID: 25173698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis.
    Kular L; Needhamsen M; Adzemovic MZ; Kramarova T; Gomez-Cabrero D; Ewing E; Piket E; Tegnér J; Beck S; Piehl F; Brundin L; Jagodic M
    Clin Epigenetics; 2019 May; 11(1):86. PubMed ID: 31146783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics: advances and approaches.
    Dong Z; Chen Y
    Sci China Life Sci; 2013 Oct; 56(10):960-7. PubMed ID: 24091688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective.
    Valor LM
    Mol Neurobiol; 2015 Feb; 51(1):406-23. PubMed ID: 24788684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.