These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24935938)
41. The Th17-defining transcription factor RORγt promotes glomerulonephritis. Steinmetz OM; Summers SA; Gan PY; Semple T; Holdsworth SR; Kitching AR J Am Soc Nephrol; 2011 Mar; 22(3):472-83. PubMed ID: 21183590 [TBL] [Abstract][Full Text] [Related]
42. T-Cell-Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Nosalski R; Siedlinski M; Denby L; McGinnigle E; Nowak M; Cat AND; Medina-Ruiz L; Cantini M; Skiba D; Wilk G; Osmenda G; Rodor J; Salmeron-Sanchez M; Graham G; Maffia P; Graham D; Baker AH; Guzik TJ Circ Res; 2020 Apr; 126(8):988-1003. PubMed ID: 32065054 [TBL] [Abstract][Full Text] [Related]
43. Interleukin-6-signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17-interleukin 17 axis in C57BL/6 mice. Ju X; Ijaz T; Sun H; Ray S; Lejeune W; Lee C; Recinos A; Guo DC; Milewicz DM; Tilton RG; Brasier AR Arterioscler Thromb Vasc Biol; 2013 Jul; 33(7):1612-21. PubMed ID: 23685554 [TBL] [Abstract][Full Text] [Related]
44. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Brown RD; Hilliard LM; Head GA; Jones ES; Widdop RE; Denton KM Hypertension; 2012 Jan; 59(1):129-35. PubMed ID: 22124434 [TBL] [Abstract][Full Text] [Related]
45. CXCR6 plays a critical role in angiotensin II-induced renal injury and fibrosis. Xia Y; Jin X; Yan J; Entman ML; Wang Y Arterioscler Thromb Vasc Biol; 2014 Jul; 34(7):1422-8. PubMed ID: 24855055 [TBL] [Abstract][Full Text] [Related]
46. Sex-Specific Modulation of Blood Pressure and the Renin-Angiotensin System by ACE (Angiotensin-Converting Enzyme) 2. Ji H; de Souza AMA; Bajaj B; Zheng W; Wu X; Speth RC; Sandberg K Hypertension; 2020 Aug; 76(2):478-487. PubMed ID: 32564694 [TBL] [Abstract][Full Text] [Related]
47. Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension. Chan CT; Sobey CG; Lieu M; Ferens D; Kett MM; Diep H; Kim HA; Krishnan SM; Lewis CV; Salimova E; Tipping P; Vinh A; Samuel CS; Peter K; Guzik TJ; Kyaw TS; Toh BH; Bobik A; Drummond GR Hypertension; 2015 Nov; 66(5):1023-33. PubMed ID: 26351030 [TBL] [Abstract][Full Text] [Related]
48. Tumor necrosis factor alpha blockade increases renal Cyp2c23 expression and slows the progression of renal damage in salt-sensitive hypertension. Elmarakby AA; Quigley JE; Pollock DM; Imig JD Hypertension; 2006 Mar; 47(3):557-62. PubMed ID: 16415373 [TBL] [Abstract][Full Text] [Related]
49. Interaction between the innate and adaptive immune systems is required to survive sepsis and control inflammation after injury. Shelley O; Murphy T; Paterson H; Mannick JA; Lederer JA Shock; 2003 Aug; 20(2):123-9. PubMed ID: 12865655 [TBL] [Abstract][Full Text] [Related]
50. Sex differences in angiotensin II-induced hypertension and kidney injury: role of AT1a receptors in the proximal tubule of the kidney. Leite APO; Li XC; Hassan R; Zheng X; Alexander B; Casarini DE; Zhuo JL Clin Sci (Lond); 2021 Aug; 135(15):1825-1843. PubMed ID: 34282828 [TBL] [Abstract][Full Text] [Related]
51. Effect of the plasminogen-plasmin system on hypertensive renal and cardiac damage. Knier B; Cordasic N; Klanke B; Heusinger-Ribeiro J; Daniel C; Veelken R; Hartner A; Hilgers KF J Hypertens; 2011 Aug; 29(8):1602-12. PubMed ID: 21610512 [TBL] [Abstract][Full Text] [Related]
52. Inhibiting PGGT1B Disrupts Function of RHOA, Resulting in T-cell Expression of Integrin α4β7 and Development of Colitis in Mice. López-Posadas R; Fastancz P; Martínez-Sánchez LDC; Panteleev-Ivlev J; Thonn V; Kisseleva T; Becker LS; Schulz-Kuhnt A; Zundler S; Wirtz S; Atreya R; Carlé B; Friedrich O; Schürmann S; Waldner MJ; Neufert C; Brakebusch CH; Bergö MO; Neurath MF; Atreya I Gastroenterology; 2019 Nov; 157(5):1293-1309. PubMed ID: 31302143 [TBL] [Abstract][Full Text] [Related]
53. Regulation of T-cell function by endogenously produced angiotensin II. Hoch NE; Guzik TJ; Chen W; Deans T; Maalouf SA; Gratze P; Weyand C; Harrison DG Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R208-16. PubMed ID: 19073907 [TBL] [Abstract][Full Text] [Related]
54. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Sriramula S; Haque M; Majid DS; Francis J Hypertension; 2008 May; 51(5):1345-51. PubMed ID: 18391105 [TBL] [Abstract][Full Text] [Related]
55. Angiotensin (1-7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Sullivan JC; Bhatia K; Yamamoto T; Elmarakby AA Hypertension; 2010 Oct; 56(4):658-66. PubMed ID: 20713916 [TBL] [Abstract][Full Text] [Related]
56. Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Xia Y; Entman ML; Wang Y Hypertension; 2013 Dec; 62(6):1129-37. PubMed ID: 24060897 [TBL] [Abstract][Full Text] [Related]
57. Role of Axl in T-Lymphocyte Survival in Salt-Dependent Hypertension. Batchu N; Hughson A; Wadosky KM; Morrell CN; Fowell DJ; Korshunov VA Arterioscler Thromb Vasc Biol; 2016 Aug; 36(8):1638-1646. PubMed ID: 27365404 [TBL] [Abstract][Full Text] [Related]
58. Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II-induced hypertension. An C; Wen J; Hu Z; Mitch WE; Wang Y Nephrol Dial Transplant; 2020 Sep; 35(9):1491-1500. PubMed ID: 32500132 [TBL] [Abstract][Full Text] [Related]