These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24936010)

  • 1. Triple-deck analysis of transonic high Reynolds number flow through slender channels.
    Kluwick A; Kornfeld M
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of acoustic feedback in boundary-layer instability.
    Wu X
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction.
    Kaburagi T; Tanabe Y
    J Acoust Soc Am; 2009 Jan; 125(1):391-404. PubMed ID: 19173426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-dimensional viscous-inviscid strong interaction model for flow in indented channels with separation and reattachment.
    Kalse SG; Bijl H; van Oudheusden BW
    J Biomech Eng; 2003 Jun; 125(3):355-62. PubMed ID: 12929240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gross separation approaching a blunt trailing edge as the turbulence intensity increases.
    Scheichl B
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The triple-deck stage of marginal separation.
    Braun S; Scheichl S; Kuzdas D
    J Eng Math; 2021; 128(1):16. PubMed ID: 34776531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges.
    Bernhard S; Möhlenkamp S; Tilgner A
    Biomed Eng Online; 2006 Jun; 5():42. PubMed ID: 16790065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On recent developments in marginal separation theory.
    Braun S; Scheichl S
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonparallel spatial stability of the boundary layer induced by Long's vortex on a solid plane perpendicular to its axis.
    Parras L; Fernandez-Feria R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036305. PubMed ID: 16241569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective numerical method for solving viscous-inviscid interaction problems.
    Kravtsova MA; Zametaev VB; Ruban AI
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1157-67. PubMed ID: 16105776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscous flow through slowly expanding or contracting porous walls with low seepage Reynolds number: a model for transport of biological fluids through vessels.
    Dinarvand S
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):853-62. PubMed ID: 21347910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streamwise-travelling viscous waves in channel flows.
    Ricco P; Hicks PD
    J Eng Math; 2018; 111(1):23-49. PubMed ID: 30996402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell.
    Livermore PW; Bailey LM; Hollerbach R
    Sci Rep; 2016 Mar; 6():22812. PubMed ID: 26980289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptivity of boundary layers to distributed wall vibrations.
    Kerimbekov RM; Ruban AI
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1145-55. PubMed ID: 16105775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.
    Frapolli N; Chikatamarla SS; Karlin IV
    Phys Rev E; 2016 Jun; 93(6):063302. PubMed ID: 27415382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of supersonic compression ramp flow.
    Logue RP; Gajjar JS; Ruban AI
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of free-stream turbulence on boundary layer transition.
    Goldstein ME
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bounds on the attractor dimension for magnetohydrodynamic channel flow with parallel magnetic field at low magnetic Reynolds number.
    Low R; Pothérat A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053022. PubMed ID: 26066263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-Viscous Effects on Liquid Flow in Microchannels.
    Ren L; Li D; Qu W
    J Colloid Interface Sci; 2001 Jan; 233(1):12-22. PubMed ID: 11112301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.