These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24936211)

  • 1. Experimental validation of FINDSITE(comb) virtual ligand screening results for eight proteins yields novel nanomolar and micromolar binders.
    Srinivasan B; Zhou H; Kubanek J; Skolnick J
    J Cheminform; 2014; 6():16. PubMed ID: 24936211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FINDSITE
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2018 Nov; 58(11):2343-2354. PubMed ID: 30278128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel small molecule binders of human N-glycanase 1, a key player in the endoplasmic reticulum associated degradation pathway.
    Srinivasan B; Zhou H; Mitra S; Skolnick J
    Bioorg Med Chem; 2016 Oct; 24(19):4750-4758. PubMed ID: 27567076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRAGSITE2: A structure and fragment-based approach for virtual ligand screening.
    Zhou H; Skolnick J
    Protein Sci; 2024 Jan; 33(1):e4869. PubMed ID: 38100293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of the Morgan Fingerprint in Structure-Based Virtual Ligand Screening.
    Zhou H; Skolnick J
    J Phys Chem B; 2024 Jun; 128(22):5363-5370. PubMed ID: 38783525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FINDSITE: a threading-based approach to ligand homology modeling.
    Brylinski M; Skolnick J
    PLoS Comput Biol; 2009 Jun; 5(6):e1000405. PubMed ID: 19503616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.
    Floriano WB; Vaidehi N; Zamanakos G; Goddard WA
    J Med Chem; 2004 Jan; 47(1):56-71. PubMed ID: 14695820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pocket detection and interaction-weighted ligand-similarity search yields novel high-affinity binders for Myocilin-OLF, a protein implicated in glaucoma.
    Srinivasan B; Tonddast-Navaei S; Skolnick J
    Bioorg Med Chem Lett; 2017 Sep; 27(17):4133-4139. PubMed ID: 28739043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FINDSITE(X): a structure-based, small molecule virtual screening approach with application to all identified human GPCRs.
    Zhou H; Skolnick J
    Mol Pharm; 2012 Jun; 9(6):1775-84. PubMed ID: 22574683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear hormone receptor targeted virtual screening.
    Schapira M; Abagyan R; Totrov M
    J Med Chem; 2003 Jul; 46(14):3045-59. PubMed ID: 12825943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR-based screening methods for lead discovery.
    Vogtherr M; Fiebig K
    EXS; 2003; (93):183-202. PubMed ID: 12613177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of nanomolar ligands with novel scaffolds for the histamine H4 receptor by virtual screening.
    Levoin N; Labeeuw O; Billot X; Calmels T; Danvy D; Krief S; Berrebi-Bertrand I; Lecomte JM; Schwartz JC; Capet M
    Eur J Med Chem; 2017 Jan; 125():565-572. PubMed ID: 27718472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding protein targets for small biologically relevant ligands across fold space using inverse ligand binding predictions.
    Hu G; Gao J; Wang K; Mizianty MJ; Ruan J; Kurgan L
    Structure; 2012 Nov; 20(11):1815-22. PubMed ID: 23141694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free resources to assist structure-based virtual ligand screening experiments.
    Villoutreix BO; Renault N; Lagorce D; Sperandio O; Montes M; Miteva MA
    Curr Protein Pept Sci; 2007 Aug; 8(4):381-411. PubMed ID: 17696871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.