These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24936317)

  • 1. Monte Carlo characterizations mapping of the (γ,n) and (n,γ) photonuclear reactions in the high energy X-ray radiation therapy.
    Ghiasi H
    Rep Pract Oncol Radiother; 2014 Jan; 19(1):30-6. PubMed ID: 24936317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.
    Hashemi SM; Hashemi-Malayeri B; Raisali G; Shokrani P; Sharafi AA; Jafarizadeh M
    Radiat Prot Dosimetry; 2008; 128(3):359-62. PubMed ID: 17875628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model.
    Zabihzadeh M; Ay MR; Allahverdi M; Mesbahi A; Mahdavi SR; Shahriari M
    Radiat Prot Dosimetry; 2009 Jul; 135(1):21-32. PubMed ID: 19483207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams.
    Naseri A; Mesbahi A
    Rep Pract Oncol Radiother; 2010 Sep; 15(5):138-44. PubMed ID: 24376940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of photoneutron fluxes emitted by electron accelerators in the 4-20 MeV range using Monte Carlo codes: A critical review.
    Sari A
    Appl Radiat Isot; 2023 Jan; 191():110506. PubMed ID: 36370471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the neutron radiation field and air activation around a medical electron linac.
    Horst F; Fehrenbacher G; Zink K
    Radiat Prot Dosimetry; 2017 Apr; 174(2):147-158. PubMed ID: 27170731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room.
    Khosravi M; Shahbazi-Gahrouei D; Jabbari K; Nasri-Nasrabadi M; Baradaran-Ghahfarokhi M; Siavashpour Z; Gheisari R; Amiri B
    Radiat Prot Dosimetry; 2013 Sep; 156(3):356-63. PubMed ID: 23538892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.
    Israngkul-Na-Ayuthaya I; Suriyapee S; Pengvanich P
    J Radiat Res; 2015 Nov; 56(6):919-26. PubMed ID: 26265661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of Siemens PRIMUS photoneutron production.
    Pena J; Franco L; Gómez F; Iglesias A; Pardo J; Pombar M
    Phys Med Biol; 2005 Dec; 50(24):5921-33. PubMed ID: 16333164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers.
    Konefał A; Orlef A; Laciak M; Ciba A; Szewczuk M
    Rep Pract Oncol Radiother; 2012 Nov; 17(6):339-46. PubMed ID: 24669311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the photoneutron generation caused by a LinAc Beryllium window with a 6 MeV treatment beam.
    Juste B; Morato S; Salvat A; Miro R; Verdu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4150-4153. PubMed ID: 30441269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoneutron-induced damage reduction for cardiac implantable electronic devices using neutron-shielding sheets in high-energy X-ray radiotherapy: A phantom study.
    Kakino R; Nakamura M; Hu N; Iramina H; Tanaka H; Sakurai Y; Mizowaki T
    Phys Med; 2021 Sep; 89():151-159. PubMed ID: 34371340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of automatic wedge filter on photoneutron and photon spectra of an 18-MV photon beam.
    Ghavami SM; Mesbahi A; Mohammadi E
    Radiat Prot Dosimetry; 2010 Feb; 138(2):123-8. PubMed ID: 19789200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective dose of A-bomb radiation in Hiroshima and Nagasaki as assessed by chromosomal effectiveness of spectrum energy photons and neutrons.
    Sasaki MS; Endo S; Ejima Y; Saito I; Okamura K; Oka Y; Hoshi M
    Radiat Environ Biophys; 2006 Jul; 45(2):79-91. PubMed ID: 16807767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron and Photon Dose Rates in a D-T Neutron Generator Facility: MCNP Simulations and Experiments.
    Health Phys; ; . PubMed ID: 31972689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.