BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24936616)

  • 21. A crucial role for Arf6 in the response of commissural axons to Slit.
    Kinoshita-Kawada M; Hasegawa H; Hongu T; Yanagi S; Kanaho Y; Masai I; Mishima T; Chen X; Tsuboi Y; Rao Y; Yuasa-Kawada J; Wu JY
    Development; 2019 Feb; 146(3):. PubMed ID: 30674481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of axon guidance by slit and netrin signaling in the Drosophila ventral nerve cord.
    Bhat KM; Gaziova I; Krishnan S
    Genetics; 2007 Aug; 176(4):2235-46. PubMed ID: 17565966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2.
    Jaworski A; Tom I; Tong RK; Gildea HK; Koch AW; Gonzalez LC; Tessier-Lavigne M
    Science; 2015 Nov; 350(6263):961-5. PubMed ID: 26586761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells.
    Hocking JC; Hehr CL; Bertolesi GE; Wu JY; McFarlane S
    Mech Dev; 2010; 127(1-2):36-48. PubMed ID: 19961927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury.
    Yi XN; Zheng LF; Zhang JW; Zhang LZ; Xu YZ; Luo G; Luo XG
    Neurosci Res; 2006 Nov; 56(3):314-21. PubMed ID: 16979769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Robo3 receptor, a key player in the development, evolution, and function of commissural systems.
    Friocourt F; Chédotal A
    Dev Neurobiol; 2017 Jul; 77(7):876-890. PubMed ID: 28033646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A tug of war between DCC and ROBO1 signaling during commissural axon guidance.
    Dailey-Krempel B; Martin AL; Jo HN; Junge HJ; Chen Z
    Cell Rep; 2023 May; 42(5):112455. PubMed ID: 37149867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulating Robo expression in vivo perturbs commissural axon pathfinding in the chick spinal cord.
    Reeber SL; Sakai N; Nakada Y; Dumas J; Dobrenis K; Johnson JE; Kaprielian Z
    J Neurosci; 2008 Aug; 28(35):8698-708. PubMed ID: 18753371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression.
    Kuwako K; Kakumoto K; Imai T; Igarashi M; Hamakubo T; Sakakibara S; Tessier-Lavigne M; Okano HJ; Okano H
    Neuron; 2010 Aug; 67(3):407-21. PubMed ID: 20696379
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Brown HE; Reichert MC; Evans TA
    G3 (Bethesda); 2018 Feb; 8(2):621-630. PubMed ID: 29217730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Midline crossing is not required for subsequent pathfinding decisions in commissural neurons.
    Bonner J; Letko M; Nikolaus OB; Krug L; Cooper A; Chadwick B; Conklin P; Lim A; Chien CB; Dorsky RI
    Neural Dev; 2012 Jun; 7():18. PubMed ID: 22672767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system.
    Sundaresan V; Mambetisaeva E; Andrews W; Annan A; Knöll B; Tear G; Bannister L
    J Comp Neurol; 2004 Jan; 468(4):467-81. PubMed ID: 14689480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal regulation of axonal repulsion by alternative splicing of a conserved microexon in mammalian
    Johnson V; Junge HJ; Chen Z
    Elife; 2019 Aug; 8():. PubMed ID: 31392959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord.
    Gorla M; Santiago C; Chaudhari K; Layman AAK; Oliver PM; Bashaw GJ
    Cell Rep; 2019 Mar; 26(12):3298-3312.e4. PubMed ID: 30893602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish.
    Yeo SY; Miyashita T; Fricke C; Little MH; Yamada T; Kuwada JY; Huh TL; Chien CB; Okamoto H
    Mech Dev; 2004 Apr; 121(4):315-24. PubMed ID: 15110042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conserved roles for Slit and Robo proteins in midline commissural axon guidance.
    Long H; Sabatier C; Ma L; Plump A; Yuan W; Ornitz DM; Tamada A; Murakami F; Goodman CS; Tessier-Lavigne M
    Neuron; 2004 Apr; 42(2):213-23. PubMed ID: 15091338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robo-3--mediated repulsive interactions guide R8 axons during Drosophila visual system development.
    Pappu KS; Morey M; Nern A; Spitzweck B; Dickson BJ; Zipursky SL
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7571-6. PubMed ID: 21490297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A non-signaling role of Robo2 in tendons is essential for Slit processing and muscle patterning.
    Ordan E; Volk T
    Development; 2015 Oct; 142(20):3512-8. PubMed ID: 26400093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary.
    Dickinson RE; Hryhorskyj L; Tremewan H; Hogg K; Thomson AA; McNeilly AS; Duncan WC
    Reproduction; 2010 Feb; 139(2):395-407. PubMed ID: 19900988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-based gene replacement reveals evolutionarily conserved axon guidance functions of
    Evans TA
    Evodevo; 2017; 8():10. PubMed ID: 28588759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.