These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 24937195)

  • 21. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures.
    Cui H; Cheetham AG; Pashuck ET; Stupp SI
    J Am Chem Soc; 2014 Sep; 136(35):12461-8. PubMed ID: 25144245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells.
    Berns EJ; Álvarez Z; Goldberger JE; Boekhoven J; Kessler JA; Kuhn HG; Stupp SI
    Acta Biomater; 2016 Jun; 37():50-8. PubMed ID: 27063496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.
    Gupta A; Willis SA; Waddington LJ; Stait-Gardner T; de Campo L; Hwang DW; Kirby N; Price WS; Moghaddam MJ
    Chemistry; 2015 Sep; 21(40):13950-60. PubMed ID: 26376329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tuning supramolecular rigidity of peptide fibers through molecular structure.
    Pashuck ET; Cui H; Stupp SI
    J Am Chem Soc; 2010 May; 132(17):6041-6. PubMed ID: 20377229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering.
    Shi Y; Ferreira DS; Banerjee J; Pickford AR; Azevedo HS
    Biomater Sci; 2019 Dec; 7(12):5132-5142. PubMed ID: 31576824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (19)F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape.
    Preslar AT; Tantakitti F; Park K; Zhang S; Stupp SI; Meade TJ
    ACS Nano; 2016 Aug; 10(8):7376-84. PubMed ID: 27425636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Post-assembly functionalization of supramolecular nanostructures with bioactive peptides and fluorescent proteins by native chemical ligation.
    Khan S; Sur S; Dankers PY; da Silva RM; Boekhoven J; Poor TA; Stupp SI
    Bioconjug Chem; 2014 Apr; 25(4):707-17. PubMed ID: 24670265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials.
    Cui H; Webber MJ; Stupp SI
    Biopolymers; 2010; 94(1):1-18. PubMed ID: 20091874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly.
    Iscen A; Schatz GC
    J Phys Chem B; 2019 Aug; 123(32):7006-7013. PubMed ID: 31337221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systemic peptide amphiphile nanofiber delivery following subcutaneous injection.
    Barlek MH; Gillis DC; Egner SA; Maragos SL; Karver MR; Stupp SI; Tsihlis ND; Kibbe MR
    Biomaterials; 2023 Dec; 303():122401. PubMed ID: 38006645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regenerative effects of peptide nanofibers in an experimental model of Parkinson's disease.
    Sever M; Turkyilmaz M; Sevinc C; Cakir A; Ocalan B; Cansev M; Guler MO; Tekinay AB
    Acta Biomater; 2016 Dec; 46():79-90. PubMed ID: 27619838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptide Self-Assemblies for Drug Delivery.
    Leite DM; Barbu E; Pilkington GJ; Lalatsa A
    Curr Top Med Chem; 2015; 15(22):2277-89. PubMed ID: 26043734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly of collagen-mimetic peptide amphiphiles into biofunctional nanofiber.
    Luo J; Tong YW
    ACS Nano; 2011 Oct; 5(10):7739-47. PubMed ID: 21899363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH and amphiphilic structure direct supramolecular behavior in biofunctional assemblies.
    Moyer TJ; Finbloom JA; Chen F; Toft DJ; Cryns VL; Stupp SI
    J Am Chem Soc; 2014 Oct; 136(42):14746-52. PubMed ID: 25310840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents.
    Lock LL; Li Y; Mao X; Chen H; Staedtke V; Bai R; Ma W; Lin R; Li Y; Liu G; Cui H
    ACS Nano; 2017 Jan; 11(1):797-805. PubMed ID: 28075559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From short peptides to nanofibers to macromolecular assemblies in biomedicine.
    Loo Y; Zhang S; Hauser CA
    Biotechnol Adv; 2012; 30(3):593-603. PubMed ID: 22041166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. All-Atom Molecular Dynamics Simulations of Peptide Amphiphile Assemblies That Spontaneously Form Twisted and Helical Ribbon Structures.
    Lai CT; Rosi NL; Schatz GC
    J Phys Chem Lett; 2017 May; 8(10):2170-2174. PubMed ID: 28453939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers.
    Lee OS; Stupp SI; Schatz GC
    J Am Chem Soc; 2011 Mar; 133(10):3677-83. PubMed ID: 21341770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds.
    Harrington DA; Cheng EY; Guler MO; Lee LK; Donovan JL; Claussen RC; Stupp SI
    J Biomed Mater Res A; 2006 Jul; 78(1):157-67. PubMed ID: 16619254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.