These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24937263)

  • 1. N- and O-acetylation of threonine residues in the context of proteomics.
    Boyer JB; Dedieu A; Armengaud J; Verdié P; Subra G; Martinez J; Enjalbal C
    J Proteomics; 2014 Aug; 108():369-72. PubMed ID: 24937263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted large-scale analysis of protein acetylation.
    Mischerikow N; Heck AJ
    Proteomics; 2011 Feb; 11(4):571-89. PubMed ID: 21246731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved N(α)-acetylated peptide enrichment following dimethyl labeling and SCX.
    Chen SH; Chen CR; Chen SH; Li DT; Hsu JL
    J Proteome Res; 2013 Jul; 12(7):3277-87. PubMed ID: 23745983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of acetylated histidine b
    Yadav K; Rao JL; Srinivas R; Nagaraj R; Jagannadham MV
    Eur J Mass Spectrom (Chichester); 2018 Jun; 24(3):261-268. PubMed ID: 29392979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive protocol to simultaneously study protein phosphorylation, acetylation, and N-linked sialylated glycosylation.
    Melo-Braga MN; Ibáñez-Vea M; Larsen MR; Kulej K
    Methods Mol Biol; 2015; 1295():275-92. PubMed ID: 25820729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey.
    Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D
    J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein alpha-N-acetylation studied by N-terminomics.
    Van Damme P; Arnesen T; Gevaert K
    FEBS J; 2011 Oct; 278(20):3822-34. PubMed ID: 21736701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects.
    Varland S; Osberg C; Arnesen T
    Proteomics; 2015 Jul; 15(14):2385-401. PubMed ID: 25914051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global identification of O-GlcNAc-modified proteins.
    Nandi A; Sprung R; Barma DK; Zhao Y; Kim SC; Falck JR; Zhao Y
    Anal Chem; 2006 Jan; 78(2):452-8. PubMed ID: 16408927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong cation exchange (SCX) based analytical methods for the targeted analysis of protein post-translational modifications.
    Mohammed S; Heck A
    Curr Opin Biotechnol; 2011 Feb; 22(1):9-16. PubMed ID: 20926283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of acetylated and free N-terminal peptides from proteomic samples based on tresyl-functionalized microspheres.
    Li L; Yan G; Zhang X
    Talanta; 2015 Nov; 144():122-8. PubMed ID: 26452801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of various endogenous and artefact modifications on large-scale proteomics analysis.
    Bienvenut WV; Sumpton D; Lilla S; Martinez A; Meinnel T; Giglione C
    Rapid Commun Mass Spectrom; 2013 Feb; 27(3):443-50. PubMed ID: 23280976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites.
    Lee TY; Hsu JB; Lin FM; Chang WC; Hsu PC; Huang HD
    J Comput Chem; 2010 Nov; 31(15):2759-71. PubMed ID: 20839302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A newly discovered post-translational modification--the acetylation of serine and threonine residues.
    Mukherjee S; Hao YH; Orth K
    Trends Biochem Sci; 2007 May; 32(5):210-6. PubMed ID: 17412595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies.
    Iwabata H; Yoshida M; Komatsu Y
    Proteomics; 2005 Dec; 5(18):4653-64. PubMed ID: 16247734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach.
    Xu YM; Huang DY; Chiu JF; Lau AT
    J Proteome Res; 2012 May; 11(5):2625-34. PubMed ID: 22494029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J
    Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications.
    Fagerquist CK; Bates AH; Heath S; King BC; Garbus BR; Harden LA; Miller WG
    J Proteome Res; 2006 Oct; 5(10):2527-38. PubMed ID: 17022624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proteome-scale study on in vivo protein Nα-acetylation using an optimized method.
    Zhang X; Ye J; Engholm-Keller K; Højrup P
    Proteomics; 2011 Jan; 11(1):81-93. PubMed ID: 21182196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.