BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24937368)

  • 1. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria.
    Szumiel I
    Int J Radiat Biol; 2015 Jan; 91(1):1-12. PubMed ID: 24937368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts.
    Averbeck D; Rodriguez-Lafrasse C
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation.
    Yoshida T; Goto S; Kawakatsu M; Urata Y; Li TS
    Free Radic Res; 2012 Feb; 46(2):147-53. PubMed ID: 22126415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pathways for maintenance of mitochondrial DNA integrity and mitochondrial functions in cells exposed to ionizing radiation].
    Gaziev AI
    Radiats Biol Radioecol; 2013; 53(2):117-36. PubMed ID: 23786028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells.
    Luukkonen J; Liimatainen A; Juutilainen J; Naarala J
    Mutat Res; 2014 Feb; 760():33-41. PubMed ID: 24374227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.
    Yamamori T; Yasui H; Yamazumi M; Wada Y; Nakamura Y; Nakamura H; Inanami O
    Free Radic Biol Med; 2012 Jul; 53(2):260-70. PubMed ID: 22580337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation-induced genomic instability, epigenetic mechanisms and the mitochondria: a dysfunctional ménage a trois?
    Baulch JE
    Int J Radiat Biol; 2019 Apr; 95(4):516-525. PubMed ID: 30451575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review.
    Kim GJ; Chandrasekaran K; Morgan WF
    Mutagenesis; 2006 Nov; 21(6):361-7. PubMed ID: 17065161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury.
    Azzam EI; Jay-Gerin JP; Pain D
    Cancer Lett; 2012 Dec; 327(1-2):48-60. PubMed ID: 22182453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic changes and nontargeted radiation effects--is there a link?
    Kovalchuk O; Baulch JE
    Environ Mol Mutagen; 2008 Jan; 49(1):16-25. PubMed ID: 18172877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy.
    Mortezaee K; Goradel NH; Amini P; Shabeeb D; Musa AE; Najafi M; Farhood B
    Curr Mol Pharmacol; 2019; 12(1):50-60. PubMed ID: 30318012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation-induced genomic instability: are epigenetic mechanisms the missing link?
    Aypar U; Morgan WF; Baulch JE
    Int J Radiat Biol; 2011 Feb; 87(2):179-91. PubMed ID: 21039330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of oxidative DNA damage in radiation induced bystander effect.
    Havaki S; Kotsinas A; Chronopoulos E; Kletsas D; Georgakilas A; Gorgoulis VG
    Cancer Lett; 2015 Jan; 356(1):43-51. PubMed ID: 24530228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of Radiation Bystander and Non-Targeted Effects: Implications to Radiation Carcinogenesis and Radiotherapy.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Najafi M; Villa V
    Curr Radiopharm; 2018; 11(1):34-45. PubMed ID: 29284398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of cellular redox metabolism for mitigation of radiation injury.
    Farhood B; Ashrafizadeh M; Khodamoradi E; Hoseini-Ghahfarokhi M; Afrashi S; Musa AE; Najafi M
    Life Sci; 2020 Jun; 250():117570. PubMed ID: 32205088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation.
    Saenko Y; Cieslar-Pobuda A; Skonieczna M; Rzeszowska-Wolny J
    Radiat Res; 2013 Oct; 180(4):360-6. PubMed ID: 24033192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status.
    Klammer H; Mladenov E; Li F; Iliakis G
    Cancer Lett; 2015 Jan; 356(1):58-71. PubMed ID: 24370566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V
    Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast.
    Helm JS; Rudel RA
    Arch Toxicol; 2020 May; 94(5):1511-1549. PubMed ID: 32399610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial reactive oxygen species-mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1.
    Shimura T; Kunugita N
    Cell Cycle; 2016 Jun; 15(11):1410-4. PubMed ID: 27078622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.