BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24937435)

  • 1. Effect of binders on airborne microorganism inactivation using TiO2 photocatalytic fluorescent lamps.
    Sungkajuntranon K; Sribenjalux P; Supothina S; Chuaybamroong P
    J Photochem Photobiol B; 2014 Sep; 138():160-71. PubMed ID: 24937435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of photocatalytic lamps on reduction of culturable airborne microorganism concentration.
    Chuaybamroong P; Thunyasirinon C; Supothina S; Sribenjalux P; Wu CY
    Chemosphere; 2011 Apr; 83(5):730-5. PubMed ID: 21339001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. For the inactivation of mold spores by UVC irradiation, with ozone acting as a promoter, TiO2 nanoparticles may act better as a "sun block" than as a photocatalytic disinfectant.
    Gong JY; Chen YC; Huang YT; Tsai MC; Yu KP
    Photochem Photobiol Sci; 2014 Sep; 13(9):1305-10. PubMed ID: 25007943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of photocatalytic HEPA filter on microorganism removal.
    Chuaybamroong P; Chotigawin R; Supothina S; Sribenjalux P; Larpkiattaworn S; Wu CY
    Indoor Air; 2010 Jun; 20(3):246-54. PubMed ID: 20573124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light inactivation of bacteria and fungi by modified titanium dioxide.
    Mitoraj D; Jańczyk A; Strus M; Kisch H; Stochel G; Heczko PB; Macyk W
    Photochem Photobiol Sci; 2007 Jun; 6(6):642-8. PubMed ID: 17549266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic inactivation of bioaerosols in a fixed-bed reactor with TiO
    Zacarías SM; Pirola S; Manassero A; Visuara ME; Alfano OM; Satuf ML
    Photochem Photobiol Sci; 2019 Apr; 18(4):884-890. PubMed ID: 30427037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevant factors affecting microbial surface decontamination by pulsed light.
    Levy C; Aubert X; Lacour B; Carlin F
    Int J Food Microbiol; 2012 Jan; 152(3):168-74. PubMed ID: 21924512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of UV-TiO2 photocatalysis and its mechanism in Bacillus subtilis spore inactivation.
    Zhang Y; Zhou L; Zhang Y
    J Environ Sci (China); 2014 Sep; 26(9):1943-8. PubMed ID: 25193846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores.
    Zhao J; Krishna V; Hua B; Moudgil B; Koopman B
    J Photochem Photobiol B; 2009 Feb; 94(2):96-100. PubMed ID: 19041258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [UV-inactivation of microorganisms in water].
    Sommer R; Weber G; Cabaj A; Wekerle J; Keck G; Schauberger G
    Zentralbl Hyg Umweltmed; 1989 Dec; 189(3):214-24. PubMed ID: 2560633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor.
    Cho M; Cates EL; Kim JH
    Water Res; 2011 Feb; 45(5):2104-10. PubMed ID: 21216427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems.
    Nakamura H
    Bull Tokyo Med Dent Univ; 1987 Jun; 34(2):25-40. PubMed ID: 3127068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacteria and fungal spores.
    Kujundzic E; Matalkah F; Howard CJ; Hernandez M; Miller SL
    J Occup Environ Hyg; 2006 Oct; 3(10):536-46. PubMed ID: 16908454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO
    Pokhum C; Viboonratanasri D; Chawengkijwanich C
    J Photochem Photobiol B; 2017 Nov; 176():17-24. PubMed ID: 28941774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of near ultraviolet light on microorganisms].
    Fraĭkin GIa; Rubin LB
    Izv Akad Nauk SSSR Biol; 1980; (3):370-9. PubMed ID: 6156188
    [No Abstract]   [Full Text] [Related]  

  • 16. Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials.
    Prasad GK; Ramacharyulu PV; Merwyn S; Agarwal GS; Srivastava AR; Singh B; Rai GP; Vijayaraghavan R
    J Hazard Mater; 2011 Jan; 185(2-3):977-82. PubMed ID: 21035260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of APTES modified TiO
    Rokicka-Konieczna P; Wanag A; Sienkiewicz A; Kusiak-Nejman E; Morawski AW
    Biochem Biophys Res Commun; 2021 Jan; 534():1064-1068. PubMed ID: 33092791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The use of impulse plasma-optical ultraviolet technologies for ensuring microbial safety of the space station environment].
    Polikarpov NA; Shashkovskiĭ SG; Gol'dshteĭn IaA; Novikova ND; Deshevaia EA; Arkhipov VP; Zhelaev IA
    Aviakosm Ekolog Med; 2010; 44(1):40-6. PubMed ID: 20803997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces.
    Wolfrum EJ; Huang J; Blake DM; Maness PC; Huang Z; Fiest J; Jacoby WA
    Environ Sci Technol; 2002 Aug; 36(15):3412-9. PubMed ID: 12188373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hybrid UV-thermal energy stimuli on inactivation of S. epidermidis and B. subtilis bacterial bioaerosols.
    Hwang GB; Jung JH; Jeong TG; Lee BU
    Sci Total Environ; 2010 Nov; 408(23):5903-9. PubMed ID: 20822796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.