These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 24937488)
1. Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: evaluated with negligible depletion solid-phase microextraction. Hu X; Li J; Chen Q; Lin Z; Yin D Sci Total Environ; 2014 Sep; 493():12-21. PubMed ID: 24937488 [TBL] [Abstract][Full Text] [Related]
2. Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Hu X; Liu J; Mayer P; Jiang G Environ Toxicol Chem; 2008 Sep; 27(9):1868-74. PubMed ID: 19086314 [TBL] [Abstract][Full Text] [Related]
3. Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Hu X; Liu J; Zhou Q; Lu S; Liu R; Cui L; Yin D; Mayer P; Jiang G Chemosphere; 2010 Aug; 80(7):693-700. PubMed ID: 20579686 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons. Li Z; Hu X; Qin L; Yin D Water Res; 2020 Mar; 170():115290. PubMed ID: 31770647 [TBL] [Abstract][Full Text] [Related]
5. Determination of total and available fractions of PAHs by SPME in oily wastewaters: overcoming interference from NAPL and NOM. Gomes RB; Nogueira R; Oliveira JM; Peixoto J; Brito AG Environ Sci Pollut Res Int; 2009 Sep; 16(6):671-8. PubMed ID: 19290560 [TBL] [Abstract][Full Text] [Related]
6. Development of solid-phase microextraction to study dissolved organic matter--polycyclic aromatic hydrocarbon interactions in aquatic environment. de Perre C; Le Ménach K; Ibalot F; Parlanti E; Budzinski H Anal Chim Acta; 2014 Jan; 807():51-60. PubMed ID: 24356220 [TBL] [Abstract][Full Text] [Related]
7. Complex interplay between formation routes and natural organic matter modification controls capabilities of C Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144 [TBL] [Abstract][Full Text] [Related]
8. Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances. Hsieh PC; Lee CL; Jen JF; Chang KC Analyst; 2015 Feb; 140(4):1275-80. PubMed ID: 25568896 [TBL] [Abstract][Full Text] [Related]
9. Influence of soil organic matter on the leaching of polycyclic aromatic hydrocarbons in soil. Petruzzelli L; Celi L; Cignetti A; Marsan FA J Environ Sci Health B; 2002 May; 37(3):187-99. PubMed ID: 12009190 [TBL] [Abstract][Full Text] [Related]
10. Influence of sorption to dissolved humic substances on transformation reactions of hydrophobic organic compounds in water. I. Chlorination of PAHs. Georgi A; Reichl A; Trommler U; Kopinke FD Environ Sci Technol; 2007 Oct; 41(20):7003-9. PubMed ID: 17993140 [TBL] [Abstract][Full Text] [Related]
11. Development of a full automation solid phase microextraction method for investigating the partition coefficient of organic pollutant in complex sample. Jiang R; Lin W; Wen S; Zhu F; Luan T; Ouyang G J Chromatogr A; 2015 Aug; 1406():27-33. PubMed ID: 26118804 [TBL] [Abstract][Full Text] [Related]
12. Validation of a modified flory-huggins concept for description of hydrophobic organic compound sorption on dissolved humic substances. Georgi A; Kopinke FD Environ Toxicol Chem; 2002 Sep; 21(9):1766-74. PubMed ID: 12206414 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of methods to determine adsorption of polycyclic aromatic hydrocarbons to dispersed carbon nanotubes. Glomstad B; Sørensen L; Liu J; Shen M; Zindler F; Jenssen BM; Booth AM Environ Sci Pollut Res Int; 2017 Oct; 24(29):23015-23025. PubMed ID: 28822048 [TBL] [Abstract][Full Text] [Related]
14. How redox conditions and irradiation affect sorption of PAHs by dispersed fullerenes (nC60). Hüffer T; Kah M; Hofmann T; Schmidt TC Environ Sci Technol; 2013 Jul; 47(13):6935-42. PubMed ID: 23234332 [TBL] [Abstract][Full Text] [Related]
15. Sorption of PAHs to colloid dispersions of humic substances in water. Arias-Estévez M; Fernández-Gándara D; García-Falcón MS; García-Río L; Mejuto JC; Simal-Gándara J Bull Environ Contam Toxicol; 2007 Sep; 79(3):251-4. PubMed ID: 17551664 [No Abstract] [Full Text] [Related]
16. Sorption determination of phenols and polycyclic aromatic hydrocarbons in a multiphase constructed wetland system by solid phase microextraction. Poerschmann J; Schultze-Nobre L Sci Total Environ; 2014 Jun; 482-483():234-40. PubMed ID: 24657368 [TBL] [Abstract][Full Text] [Related]
17. The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Ukalska-Jaruga A; Smreczak B Molecules; 2020 May; 25(11):. PubMed ID: 32466451 [TBL] [Abstract][Full Text] [Related]
18. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals. Jonker MT; Muijs B Chemosphere; 2010 Jun; 80(3):223-7. PubMed ID: 20466408 [TBL] [Abstract][Full Text] [Related]
19. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Xie B; Xu Z; Guo W; Li Q Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134 [TBL] [Abstract][Full Text] [Related]
20. The effects of humic substances on the intake of micro-organic pollutants into the aquatic biota. Matsubara J; Takahashi J; Ikeda K; Shimizu Y; Matsui S Water Sci Technol; 2003; 47(7-8):117-24. PubMed ID: 12793670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]