These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24937497)

  • 1. Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp.
    Nowicka-Krawczyk P; Żelazna-Wieczorek J; Otlewska A; Koziróg A; Rajkowska K; Piotrowska M; Gutarowska B; Żydzik-Białek A
    Sci Total Environ; 2014 Sep; 493():116-23. PubMed ID: 24937497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abiotic determinants of the historical buildings biodeterioration in the former Auschwitz II-Birkenau concentration and extermination camp.
    Piotrowska M; Otlewska A; Rajkowska K; Koziróg A; Hachułka M; Nowicka-Krawczyk P; Wolski GJ; Gutarowska B; Kunicka-Styczyńska A; Zydzik-Białek A
    PLoS One; 2014; 9(10):e109402. PubMed ID: 25279789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal and cyanobacterial biofilms on calcareous historic buildings.
    Crispim CA; Gaylarde PM; Gaylarde CC
    Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz II-Birkenau concentration and extermination camp.
    Otlewska A; Adamiak J; Gutarowska B
    Syst Appl Microbiol; 2015 Feb; 38(1):48-55. PubMed ID: 25458608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of biological colonization of historic buildings in the former Auschwitz II-Birkenau concentration camp.
    Rajkowska K; Otlewska A; Koziróg A; Piotrowska M; Nowicka-Krawczyk P; Hachułka M; Wolski GJ; Kunicka-Styczyńska A; Gutarowska B; Zydzik-Białek A
    Ann Microbiol; 2014; 64(2):799-808. PubMed ID: 24860283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.
    Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B
    Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards understanding the link between the deterioration of building materials and the nature of aerophytic green algae.
    Nowicka-Krawczyk P; Komar M; Gutarowska B
    Sci Total Environ; 2022 Jan; 802():149856. PubMed ID: 34454144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings.
    Gutarowska B; Celikkol-Aydin S; Bonifay V; Otlewska A; Aydin E; Oldham AL; Brauer JI; Duncan KE; Adamiak J; Sunner JA; Beech IB
    Front Microbiol; 2015; 6():979. PubMed ID: 26483760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capsular polysaccharides of cultured phototrophic biofilms.
    Di Pippo F; Bohn A; Congestri R; De Philippis R; Albertano P
    Biofouling; 2009; 25(6):495-504. PubMed ID: 19382011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of freshwater algal cell density to hydrochemical variables in an urban aquatic ecosystem, northern China.
    Yang J; Wang F; Lv J; Liu Q; Nan F; Xie S; Feng J
    Environ Monit Assess; 2018 Dec; 191(1):29. PubMed ID: 30591969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm diversity, structure and matrix seasonality in a full-scale cooling tower.
    Di Gregorio L; Congestri R; Tandoi V; Neu TR; Rossetti S; Di Pippo F
    Biofouling; 2018 Nov; 34(10):1093-1109. PubMed ID: 30663885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endolithic phototrophs in built and natural stone.
    Gaylarde CC; Gaylarde PM; Neilan BA
    Curr Microbiol; 2012 Aug; 65(2):183-8. PubMed ID: 22614098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of biofilm succession on a sheltered rocky shore in Hong Kong.
    Chan BK; Chan WK; Walker G
    Biofouling; 2003 Dec; 19(6):371-80. PubMed ID: 14768466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ.
    Popović S; Krizmanić J; Vidaković D; Karadžić V; Milovanović Ž; Pećić M; Subakov Simić G
    Environ Monit Assess; 2020 Oct; 192(11):720. PubMed ID: 33089398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps).
    Piano E; Bona F; Falasco E; La Morgia V; Badino G; Isaia M
    Sci Total Environ; 2015 Dec; 536():1007-1018. PubMed ID: 26112916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desmids and biofilms of freshwater wetlands: development and microarchitecture.
    Domozych DS; Domozych CR
    Microb Ecol; 2008 Jan; 55(1):81-93. PubMed ID: 17450460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular diversity of phototrophic biofilms on building stone.
    Hallmann C; Stannek L; Fritzlar D; Hause-Reitner D; Friedl T; Hoppert M
    FEMS Microbiol Ecol; 2013 May; 84(2):355-72. PubMed ID: 23278436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on algal diversity in Zoige Alpine Wetland].
    Chen X; Liu RY; Wang YF; Zhang HX
    Huan Jing Ke Xue; 2012 Mar; 33(3):979-86. PubMed ID: 22624397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of algal phytodegradation of petroleum naphthenic acids.
    Headley JV; Du JL; Peru KM; Gurprasad N; McMartin DW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):227-32. PubMed ID: 18205052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the sensitivity of chlorophytes, cyanobacteria, and diatoms to major-use antibiotics.
    Guo J; Selby K; Boxall AB
    Environ Toxicol Chem; 2016 Oct; 35(10):2587-2596. PubMed ID: 26991072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.