These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24937704)

  • 1. Mechanism of fast pyrolysis of lignin: studying model compounds.
    Custodis VB; Hemberger P; Ma Z; van Bokhoven JA
    J Phys Chem B; 2014 Jul; 118(29):8524-31. PubMed ID: 24937704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Inter- and Intramolecular Reactions Dominate the Formation of Products in Lignin Pyrolysis.
    Custodis VBF; Hemberger P; van Bokhoven JA
    Chemistry; 2017 Jun; 23(36):8658-8668. PubMed ID: 28386991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the fast pyrolysis of lignin.
    Patwardhan PR; Brown RC; Shanks BH
    ChemSusChem; 2011 Nov; 4(11):1629-36. PubMed ID: 21948630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectron Photoion Coincidence Spectroscopy to Unveil Reaction Mechanisms by Isomer-selective Detection of Elusive Molecules: From Combustion to Catalysis.
    Hemberger P; Bodi A
    Chimia (Aarau); 2018 Apr; 72(4):227-232. PubMed ID: 29720314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis.
    Hemberger P; Custodis VBF; Bodi A; Gerber T; van Bokhoven JA
    Nat Commun; 2017 Jun; 8():15946. PubMed ID: 28660882
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Pan Z; Bodi A; van Bokhoven JA; Hemberger P
    Phys Chem Chem Phys; 2022 Sep; 24(36):21786-21793. PubMed ID: 36082786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of alpha/beta-selectivities.
    Beste A; Buchanan AC; Britt PF; Hathorn BC; Harrison RJ
    J Phys Chem A; 2007 Dec; 111(48):12118-26. PubMed ID: 17990858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the pyrolysis of ethyl formate in the dilute gas phase by synchrotron radiation and theory.
    Lowe B; Cardona AL; Salas J; Bodi A; Mayer PM; Burgos Paci MA
    J Mass Spectrom; 2023 Jan; 58(1):e4901. PubMed ID: 36691327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Study of the Pyrolysis and Oxidation of Guaiacol.
    Nowakowska M; Herbinet O; Dufour A; Glaude PA
    J Phys Chem A; 2018 Oct; 122(39):7894-7909. PubMed ID: 30200758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.
    Beste A; Buchanan AC
    J Phys Chem A; 2012 Dec; 116(50):12242-8. PubMed ID: 23194314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol.
    Azadfar M; Gao AH; Bule MV; Chen S
    Int J Biol Macromol; 2015 Apr; 75():58-66. PubMed ID: 25603142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism.
    Ma Z; Custodis V; Hemberger P; Bährle C; Vogel F; Jeschk G; van Bokhoven JA
    Chimia (Aarau); 2015; 69(10):597-602. PubMed ID: 26598403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2016 Sep; 9(17):2397-403. PubMed ID: 27486717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoionization of propargyl and bromopropargyl radicals: a threshold photoelectron spectroscopic study.
    Hemberger P; Lang M; Noller B; Fischer I; Alcaraz C; Cunha de Miranda BK; Garcia GA; Soldi-Lose H
    J Phys Chem A; 2011 Mar; 115(11):2225-30. PubMed ID: 21366257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.