These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 24937774)
1. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries. Wang R; Wu S; Lv Y; Lin Z Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774 [TBL] [Abstract][Full Text] [Related]
2. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. Wu S; Wang R; Wang Z; Lin Z Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278 [TBL] [Abstract][Full Text] [Related]
3. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782 [TBL] [Abstract][Full Text] [Related]
4. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes. Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289 [TBL] [Abstract][Full Text] [Related]
5. Microwave-Induced in situ synthesis of Zn2GeO4/N-doped graphene nanocomposites and their lithium-storage properties. Zou F; Hu X; Sun Y; Luo W; Xia F; Qie L; Jiang Y; Huang Y Chemistry; 2013 May; 19(19):6027-33. PubMed ID: 23495087 [TBL] [Abstract][Full Text] [Related]
6. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Li B; Cao H; Shao J; Li G; Qu M; Yin G Inorg Chem; 2011 Mar; 50(5):1628-32. PubMed ID: 21244033 [TBL] [Abstract][Full Text] [Related]
7. Size-controllable synthesis of Zn Chen Y; Ji Z; Shen X; Chen H; Qi Y; Yuan A; Qiu J; Li B J Colloid Interface Sci; 2021 May; 589():13-24. PubMed ID: 33450456 [TBL] [Abstract][Full Text] [Related]
8. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries. Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220 [TBL] [Abstract][Full Text] [Related]
9. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Yang Y; Ji X; Lu F; Chen Q; Banks CE Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441 [TBL] [Abstract][Full Text] [Related]
10. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
11. Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries. Wang X; Zhang L; Zhang Z; Yu A; Wu P Phys Chem Chem Phys; 2016 Feb; 18(5):3893-9. PubMed ID: 26765651 [TBL] [Abstract][Full Text] [Related]
12. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Hu L; Chen Q Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788 [TBL] [Abstract][Full Text] [Related]
13. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017 [TBL] [Abstract][Full Text] [Related]
16. Graphene Aerogels with Anchored Sub-Micrometer Mulberry-Like ZnO Particles for High-Rate and Long-Cycle Anode Materials in Lithium Ion Batteries. Fan L; Zhang Y; Zhang Q; Wu X; Cheng J; Zhang N; Feng Y; Sun K Small; 2016 Oct; 12(37):5208-5216. PubMed ID: 27515914 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of one-dimensional Mn₃O₄/Zn₂SnO₄ hybrid composites and their high performance as anodes for LIBs. Zhang R; He Y; Li A; Xu L Nanoscale; 2014 Nov; 6(23):14221-6. PubMed ID: 25195654 [TBL] [Abstract][Full Text] [Related]
18. Enhanced electrochemical performance of lithium ion batteries using Sb Dong Y; Yang S; Zhang Z; Lee JM; Zapien JA Nanoscale; 2018 Feb; 10(7):3159-3165. PubMed ID: 29411002 [TBL] [Abstract][Full Text] [Related]
19. Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Dong Y; Ma R; Hu M; Cheng H; Yang Q; Li YY; Zapien JA Phys Chem Chem Phys; 2013 May; 15(19):7174-81. PubMed ID: 23558566 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]