These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 24938312)
1. Three-dimensional microstructure of high-performance pulsed-laser deposited Ni-YSZ SOFC anodes. Kennouche D; Hong J; Noh HS; Son JW; Barnett SA Phys Chem Chem Phys; 2014 Aug; 16(29):15249-55. PubMed ID: 24938312 [TBL] [Abstract][Full Text] [Related]
2. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells. Liu T; Ren C; Fang S; Wang Y; Chen F ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919 [TBL] [Abstract][Full Text] [Related]
3. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells. Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379 [TBL] [Abstract][Full Text] [Related]
4. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode. Kang LS; Park JL; Lee S; Jin YH; Hong HS; Lee CG; Kim BS J Nanosci Nanotechnol; 2014 Dec; 14(12):8974-7. PubMed ID: 25970993 [TBL] [Abstract][Full Text] [Related]
5. A redox-stable efficient anode for solid-oxide fuel cells. Tao S; Irvine JT Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533 [TBL] [Abstract][Full Text] [Related]
6. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells. Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116 [TBL] [Abstract][Full Text] [Related]
7. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. Bessler WG; Vogler M; Störmer H; Gerthsen D; Utz A; Weber A; Ivers-Tiffée E Phys Chem Chem Phys; 2010 Nov; 12(42):13888-903. PubMed ID: 20820576 [TBL] [Abstract][Full Text] [Related]
8. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance. Pecho OM; Mai A; Münch B; Hocker T; Flatt RJ; Holzer L Materials (Basel); 2015 Oct; 8(10):7129-7144. PubMed ID: 28793624 [TBL] [Abstract][Full Text] [Related]
9. Activation of H(2) oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions. Deleebeeck L; Shishkin M; Addo P; Paulson S; Molero H; Ziegler T; Birss V Phys Chem Chem Phys; 2014 May; 16(20):9383-93. PubMed ID: 24718381 [TBL] [Abstract][Full Text] [Related]
10. Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells. Guo T; Dong X; Shirolkar MM; Song X; Wang M; Zhang L; Li M; Wang H ACS Appl Mater Interfaces; 2014 Sep; 6(18):16131-9. PubMed ID: 25162913 [TBL] [Abstract][Full Text] [Related]
11. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ. Hanifi AR; Laguna-Bercero MA; Sandhu NK; Etsell TH; Sarkar P Sci Rep; 2016 Jun; 6():27359. PubMed ID: 27270152 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured thin solid oxide fuel cells with high power density. Ignatiev A; Chen X; Wu N; Lu Z; Smith L Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034 [TBL] [Abstract][Full Text] [Related]
13. Effect of interlayer on structure and performance of anode-supported SOFC single cells. Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861 [TBL] [Abstract][Full Text] [Related]
14. A high-performance Ni-CeO Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470 [TBL] [Abstract][Full Text] [Related]
15. Post-annealing of thin-film yttria stabilized zirconia electrolytes for anode-supported low-temperature solid oxide fuel cells. Bae J; Chang I; Kang S; Hong S; Cha SW; Kim YB J Nanosci Nanotechnol; 2014 Dec; 14(12):9294-9. PubMed ID: 25971054 [TBL] [Abstract][Full Text] [Related]
16. Elucidating the performance benefits enabled by YSZ/Ni-YSZ bilayer thin films in a porous anode-supported cell architecture. Develos-Bagarinao K; Yamaguchi T; Kishimoto H Nanoscale; 2023 Jul; 15(27):11569-11581. PubMed ID: 37376979 [TBL] [Abstract][Full Text] [Related]
17. Nanostructured Double Perovskite Cathode With Low Sintering Temperature For Intermediate Temperature Solid Oxide Fuel Cells. Kim S; Jun A; Kwon O; Kim J; Yoo S; Jeong HY; Shin J; Kim G ChemSusChem; 2015 Sep; 8(18):3153-8. PubMed ID: 26227300 [TBL] [Abstract][Full Text] [Related]
18. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570 [TBL] [Abstract][Full Text] [Related]
20. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]