These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24938489)

  • 1. Automated synthesis of backbone protected peptides.
    Abdel-Aal AB; Papageorgiou G; Quibell M; Offer J
    Chem Commun (Camb); 2014 Aug; 50(61):8316-9. PubMed ID: 24938489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Amide Backbone-Modified Peptides.
    Abdel-Aal AM; Raz R; Papageorgiou G; Offer J
    Methods Mol Biol; 2020; 2103():225-237. PubMed ID: 31879929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation.
    Abdel-Aal AB; Papageorgiou G; Raz R; Quibell M; Burlina F; Offer J
    J Pept Sci; 2016 May; 22(5):360-7. PubMed ID: 27086749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully automated flow-based approach for accelerated peptide synthesis.
    Mijalis AJ; Thomas DA; Simon MD; Adamo A; Beaumont R; Jensen KF; Pentelute BL
    Nat Chem Biol; 2017 May; 13(5):464-466. PubMed ID: 28244989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity.
    Hsu CH; Wu SH; Chang DK; Chen C
    J Biol Chem; 2002 Jun; 277(25):22725-33. PubMed ID: 11937502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scope and limitations of pseudoprolines as individual amino acids in peptide synthesis.
    Senko DA; Timofeev ND; Kasheverov IE; Ivanov IA
    Amino Acids; 2021 May; 53(5):665-671. PubMed ID: 33813636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-automated microwave-assisted SPPS: Optimization of protocols and synthesis of difficult sequences.
    Pedersen SL; Sørensen KK; Jensen KJ
    Biopolymers; 2010; 94(2):206-12. PubMed ID: 20225294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a unique automated synthesis system for solution-phase peptide synthesis.
    Sugawara T; Kobayashi K; Okamoto S; Kitada C; Fujino M
    Chem Pharm Bull (Tokyo); 1995 Aug; 43(8):1272-80. PubMed ID: 7553977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The automated "SynChrom" system for solid-phase synthesis of peptides and liquid column chromatography. II. Use in the solid-phase synthesis of peptides and liquid column chromatography].
    Baru MB; Cherskiĭ VV; Danilov AV; Moshnikov SA; Mustaeva LG
    Bioorg Khim; 1995 Jul; 21(7):506-16. PubMed ID: 7488265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer.
    Joshi R; Jha D; Su W; Engelmann J
    J Pept Sci; 2011 Jan; 17(1):8-13. PubMed ID: 20979047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of a frugal, automated, solid-phase peptide synthesizer.
    Kallmyer NE; Rider NE; Reuel NF
    PLoS One; 2020; 15(8):e0237473. PubMed ID: 32813720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the automated solid-phase synthesis of a 38mer peptide with difficult sequence pattern under different synthesis strategies.
    Winkler DF; Tian K
    Amino Acids; 2015 Apr; 47(4):787-94. PubMed ID: 25595601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-Methoxy-4-methylsulfinylbenzyl: a backbone amide safety-catch protecting group for the synthesis and purification of difficult peptide sequences.
    Paradís-Bas M; Tulla-Puche J; Albericio F
    Chemistry; 2014 Nov; 20(46):15031-9. PubMed ID: 25280354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HBTU activation for automated Fmoc solid-phase peptide synthesis.
    Fields CG; Lloyd DH; Macdonald RL; Otteson KM; Noble RL
    Pept Res; 1991; 4(2):95-101. PubMed ID: 1815783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the 3-nitro-2-pyridine sulfenyl protecting group to introduce N epsilon-branching at lysine during solid-phase peptide synthesis. I. Application to the synthesis of a peptide template containing two addressable sites.
    Rajagopalan S; Heck TJ; Iwamoto T; Tomich JM
    Int J Pept Protein Res; 1995 Feb; 45(2):173-9. PubMed ID: 7782165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation of resin-bound peptides during solid-phase peptide synthesis. Prediction of difficult sequences.
    Krchnák V; Flegelová Z; Vágner J
    Int J Pept Protein Res; 1993 Nov; 42(5):450-4. PubMed ID: 8106196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some 'difficult sequences' made easy. A study of interchain association in solid-phase peptide synthesis.
    Hyde C; Johnson T; Owen D; Quibell M; Sheppard RC
    Int J Pept Protein Res; 1994 May; 43(5):431-40. PubMed ID: 8070966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of orthogonally protected hypusine for solid-phase peptide synthesis.
    Song A; Tom J; Yu Z; Pham V; Tan D; Zhang D; Fang G; Yu T; Deshayes K
    J Org Chem; 2015 Apr; 80(7):3677-81. PubMed ID: 25769022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Fmoc-N-(2-hydroxy-4-methoxybenzyl)amino acids in peptide synthesis.
    Zeng W; Regamey PO; Rose K; Wang Y; Bayer E
    J Pept Res; 1997 Mar; 49(3):273-9. PubMed ID: 9151261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.