These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24938779)

  • 1. Catalytic conversion of γ-valerolactone to ε-caprolactam: towards nylon from renewable feedstock.
    Raoufmoghaddam S; Rood MT; Buijze FK; Drent E; Bouwman E
    ChemSusChem; 2014 Jul; 7(7):1984-90. PubMed ID: 24938779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nylon Intermediates from Bio-Based Levulinic Acid.
    Marckwordt A; El Ouahabi F; Amani H; Tin S; Kalevaru NV; Kamer PCJ; Wohlrab S; de Vries JG
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3486-3490. PubMed ID: 30650227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards 'bio-based' Nylon: conversion of gamma-valerolactone to methyl pentenoate under catalytic distillation conditions.
    Lange JP; Vestering JZ; Haan RJ
    Chem Commun (Camb); 2007 Sep; (33):3488-90. PubMed ID: 17700891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.
    Raoufmoghaddam S; Drent E; Bouwman E
    ChemSusChem; 2013 Sep; 6(9):1759-73. PubMed ID: 24009108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals.
    de Vries JG
    Chem Rec; 2016 Dec; 16(6):2783-2796. PubMed ID: 27763716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone.
    Buntara T; Noel S; Phua PH; Melián-Cabrera I; de Vries JG; Heeres HJ
    Angew Chem Int Ed Engl; 2011 Jul; 50(31):7083-7. PubMed ID: 21698732
    [No Abstract]   [Full Text] [Related]  

  • 8. Selective recovery of caprolactam from the thermo-catalytic conversion of textile waste over γ-Al
    Yang W; Jung S; Lee J; Lee SW; Kim YT; Kwon EE
    Environ Pollut; 2023 Jul; 329():121684. PubMed ID: 37087088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. γ-Valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water.
    Bond JQ; Alonso DM; West RM; Dumesic JA
    Langmuir; 2010 Nov; 26(21):16291-8. PubMed ID: 20513157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascade upgrading of γ-valerolactone to biofuels.
    Yan K; Lafleur T; Wu X; Chai J; Wu G; Xie X
    Chem Commun (Camb); 2015 Apr; 51(32):6984-7. PubMed ID: 25797827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass.
    Zhao Y; Fu Y; Guo QX
    Bioresour Technol; 2012 Jun; 114():740-4. PubMed ID: 22507905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield.
    Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P
    ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.
    Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability.
    Cywar RM; Rorrer NA; Mayes HB; Maurya AK; Tassone CJ; Beckham GT; Chen EY
    J Am Chem Soc; 2022 Mar; 144(12):5366-5376. PubMed ID: 35290039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates.
    Larson RT; Samant A; Chen J; Lee W; Bohn MA; Ohlmann DM; Zuend SJ; Toste FD
    J Am Chem Soc; 2017 Oct; 139(40):14001-14004. PubMed ID: 28972364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.
    Xin L; Zhang Z; Qi J; Chadderdon DJ; Qiu Y; Warsko KM; Li W
    ChemSusChem; 2013 Apr; 6(4):674-86. PubMed ID: 23457116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.