BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24938797)

  • 1. Streptococcus pneumoniae secretes a glyceraldehyde-3-phosphate dehydrogenase, which binds haemoglobin and haem.
    Vázquez-Zamorano ZE; González-López MA; Romero-Espejel ME; Azuara-Liceaga EI; López-Casamichana M; Olivares-Trejo Jde J
    Biometals; 2014 Aug; 27(4):683-93. PubMed ID: 24938797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptococcus pneumoniae requires iron for its viability and expresses two membrane proteins that bind haemoglobin and haem.
    Romero-Espejel ME; González-López MA; Olivares-Trejo Jde J
    Metallomics; 2013 Apr; 5(4):384-9. PubMed ID: 23487307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae.
    Romero-Espejel ME; Rodríguez MA; Chávez-Munguía B; Ríos-Castro E; Olivares-Trejo Jde J
    Front Cell Infect Microbiol; 2016; 6():47. PubMed ID: 27200302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helicobacter pylori secretes the chaperonin GroEL (HSP60), which binds iron.
    González-López MA; Velázquez-Guadarrama N; Romero-Espejel ME; Olivares-Trejo Jde J
    FEBS Lett; 2013 Jun; 587(12):1823-8. PubMed ID: 23684642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entamoeba histolytica secretes two haem-binding proteins to scavenge haem.
    Cruz-Castañeda A; López-Casamichana M; Olivares-Trejo JJ
    Biochem J; 2011 Feb; 434(1):105-11. PubMed ID: 21126234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frpB1 gene of Helicobacter pylori is regulated by iron and encodes a membrane protein capable of binding haem and haemoglobin.
    Carrizo-Chávez MA; Cruz-Castañeda A; Olivares-Trejo Jde J
    FEBS Lett; 2012 Mar; 586(6):875-9. PubMed ID: 22449974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein.
    Bergmann S; Rohde M; Hammerschmidt S
    Infect Immun; 2004 Apr; 72(4):2416-9. PubMed ID: 15039372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme.
    Nelson D; Goldstein JM; Boatright K; Harty DW; Cook SL; Hickman PJ; Potempa J; Travis J; Mayo JA
    J Dent Res; 2001 Jan; 80(1):371-7. PubMed ID: 11269731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the haem-uptake system of the equine pathogen Streptococcus equi subsp. equi.
    Meehan M; Burke FM; Macken S; Owen P
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1824-1835. PubMed ID: 20223800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Hino T
    FEMS Microbiol Lett; 2006 Apr; 257(1):17-23. PubMed ID: 16553827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of haem from the haptoglobin-haemoglobin complex by Bacteroides fragilis.
    Otto BR; Sparrius M; Wors DJ; de Graaf FK; MacLaren DM
    Microb Pathog; 1994 Sep; 17(3):137-47. PubMed ID: 7700131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of truncated haemoglobin from an extremely thermophilic and acidophilic bacterium.
    Jamil F; Teh AH; Schadich E; Saito JA; Najimudin N; Alam M
    J Biochem; 2014 Aug; 156(2):97-106. PubMed ID: 24733432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure and biochemical properties of DHBPS from Streptococcus pneumoniae, a potential anti-infective target for Gram-positive bacteria.
    Li J; Hua Z; Miao L; Jian T; Wei Y; Shasha Z; Shaocheng Z; Zhen G; Hongpeng Z; Ailong H; Deqiang W
    Protein Expr Purif; 2013 Oct; 91(2):161-8. PubMed ID: 23954596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR experiments redefine the hemoglobin binding properties of bacterial NEAr-iron Transporter domains.
    Macdonald R; Mahoney BJ; Ellis-Guardiola K; Maresso A; Clubb RT
    Protein Sci; 2019 Aug; 28(8):1513-1523. PubMed ID: 31120610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure and function of an essential CMP kinase of Streptococcus pneumoniae.
    Yu L; Mack J; Hajduk PJ; Kakavas SJ; Saiki AY; Lerner CG; Olejniczak ET
    Protein Sci; 2003 Nov; 12(11):2613-21. PubMed ID: 14573872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous folding of the excised coenzyme-binding domain of D-glyceraldehyde 3-phosphate dehydrogenase from Thermotoga maritima.
    Jecht M; Tomschy A; Kirschner K; Jaenicke R
    Protein Sci; 1994 Mar; 3(3):411-8. PubMed ID: 8019412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron acquisition by the haem-binding Isd proteins in Staphylococcus aureus: studies of the mechanism using magnetic circular dichroism.
    Tiedemann MT; Muryoi N; Heinrichs DE; Stillman MJ
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1138-43. PubMed ID: 19021512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct evidence for the role of haem doming as the primary event in the cooperative transition of haemoglobin.
    Franzen S; Lambry JC; Bohn B; Poyart C; Martin JL
    Nat Struct Biol; 1994 Apr; 1(4):230-3. PubMed ID: 7656051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.
    Vu BC; Nothnagel HJ; Vuletich DA; Falzone CJ; Lecomte JT
    Biochemistry; 2004 Oct; 43(39):12622-33. PubMed ID: 15449952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Biology of Bacterial Haemophores.
    Ascenzi P; di Masi A; Leboffe L; Frangipani E; Nardini M; Verde C; Visca P
    Adv Microb Physiol; 2015; 67():127-76. PubMed ID: 26616517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.