These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 24938833)
1. Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web. Jabiol J; Cornut J; Danger M; Jouffroy M; Elger A; Chauvet E Oecologia; 2014 Sep; 176(1):225-35. PubMed ID: 24938833 [TBL] [Abstract][Full Text] [Related]
2. Trophic cascades within and across ecosystems: The role of anti-predatory defences, predator type and detritus quality. Piccoli GCO; Antiqueira PAP; Srivastava DS; Romero GQ J Anim Ecol; 2024 Jun; 93(6):755-768. PubMed ID: 38404168 [TBL] [Abstract][Full Text] [Related]
3. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions. Majdi N; Boiché A; Traunspurger W; Lecerf A J Anim Ecol; 2014 Jul; 83(4):953-62. PubMed ID: 24286440 [TBL] [Abstract][Full Text] [Related]
4. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Lecerf A; Dobson M; Dang CK; Chauvet E Oecologia; 2005 Dec; 146(3):432-42. PubMed ID: 16096846 [TBL] [Abstract][Full Text] [Related]
5. Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. Jabiol J; McKie BG; Bruder A; Bernadet C; Gessner MO; Chauvet E J Anim Ecol; 2013 Sep; 82(5):1042-51. PubMed ID: 23574276 [TBL] [Abstract][Full Text] [Related]
6. Functional traits of predators and decomposer prey determine context dependency in trophic control over ecosystems. Lienau JR; Schmitz OJ J Anim Ecol; 2024 Jun; 93(6):654-658. PubMed ID: 38708817 [TBL] [Abstract][Full Text] [Related]
8. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems. Atwood TB; Hammill E; Richardson JS Glob Chang Biol; 2014 Nov; 20(11):3386-96. PubMed ID: 24753392 [TBL] [Abstract][Full Text] [Related]
9. Litter P content drives consumer production in detritus-based streams spanning an experimental N:P gradient. Demi LM; Benstead JP; Rosemond AD; Maerz JC Ecology; 2018 Feb; 99(2):347-359. PubMed ID: 29266195 [TBL] [Abstract][Full Text] [Related]
10. Key plant species and detritivores drive diversity effects on instream leaf litter decomposition more than functional diversity: A microcosm study. Rubio-Ríos J; Pérez J; Salinas MJ; Fenoy E; López-Rojo N; Boyero L; Casas JJ Sci Total Environ; 2021 Dec; 798():149266. PubMed ID: 34340079 [TBL] [Abstract][Full Text] [Related]
11. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain). Monroy S; Menéndez M; Basaguren A; Pérez J; Elosegi A; Pozo J Sci Total Environ; 2016 Dec; 573():1450-1459. PubMed ID: 27503627 [TBL] [Abstract][Full Text] [Related]
12. Habitat structure alters top-down control in litter communities. Kalinkat G; Brose U; Rall BC Oecologia; 2013 Jul; 172(3):877-87. PubMed ID: 23188055 [TBL] [Abstract][Full Text] [Related]
13. Aquatic Insect Herbivore Functional Community Traits Respond to a Different Niche Between a Riparian and Sugar Cane Leaf Litter Processing. Saulino HHL; Vieira GC; Trivinho-Strixino S Neotrop Entomol; 2020 Feb; 49(1):33-39. PubMed ID: 31728911 [TBL] [Abstract][Full Text] [Related]
14. Food web structure shaped by habitat size and climate across a latitudinal gradient. Romero GQ; Piccoli GC; de Omena PM; Gonçalves-Souza T Ecology; 2016 Oct; 97(10):2705-2715. PubMed ID: 27859108 [TBL] [Abstract][Full Text] [Related]
15. Functional consumers regulate the effect of availability of subsidy on trophic cascades in the Yellow River Delta, China. Yan J; Cui B; Huang H; O'Flynn S; Bai J; Ysebaert T Mar Pollut Bull; 2019 Mar; 140():157-164. PubMed ID: 30803629 [TBL] [Abstract][Full Text] [Related]
16. Salamander loss alters litter decomposition dynamics. Laking AE; Li Z; Goossens E; Miñarro M; Beukema W; Lens L; Bonte D; Verheyen K; Pasmans F; Martel A Sci Total Environ; 2021 Jul; 776():145994. PubMed ID: 33647642 [TBL] [Abstract][Full Text] [Related]