These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 24939137)
1. Evaluation of ultra high-performance [corrected] liquid chromatography columns for the analysis of unmodified and antisense oligonucleotides. Studzińska S; Buszewski B Anal Bioanal Chem; 2014 Nov; 406(28):7127-36. PubMed ID: 24939137 [TBL] [Abstract][Full Text] [Related]
2. Application of hydrophilic interaction liquid chromatography coupled with mass spectrometry in the analysis of phosphorothioate oligonucleotides in serum. Studzińska S; Łobodziński F; Buszewski B J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1040():282-288. PubMed ID: 27825626 [TBL] [Abstract][Full Text] [Related]
3. New approach to the determination phosphorothioate oligonucleotides by ultra high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Studzińska S; Mounicou S; Szpunar J; Łobiński R; Buszewski B Anal Chim Acta; 2015 Jan; 855():13-20. PubMed ID: 25542085 [TBL] [Abstract][Full Text] [Related]
4. Development of a method based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for studying the in vitro metabolism of phosphorothioate oligonucleotides. Studzińska S; Rola R; Buszewski B Anal Bioanal Chem; 2016 Feb; 408(6):1585-95. PubMed ID: 26758600 [TBL] [Abstract][Full Text] [Related]
5. Analysis of microRNA and modified oligonucleotides with the use of ultra high performance liquid chromatography coupled with mass spectrometry. Studzińska S; Buszewski B J Chromatogr A; 2018 Jun; 1554():71-80. PubMed ID: 29699869 [TBL] [Abstract][Full Text] [Related]
6. Development of SPE method for the extraction of phosphorothioate oligonucleotides from serum samples. Nuckowski Ł; Kaczmarkiewicz A; Studzińska S Bioanalysis; 2018 Oct; 10(20):1667-1677. PubMed ID: 30354278 [TBL] [Abstract][Full Text] [Related]
7. Hydrophilic interaction in solid-phase extraction of antisense oligonucleotides. Nuckowski Ł; Kilanowska A; Studzińska S J Chromatogr Sci; 2020 Apr; 58(4):383-387. PubMed ID: 32043121 [TBL] [Abstract][Full Text] [Related]
9. Analytical and preparative separation of phosphorothioated oligonucleotides: columns and ion-pair reagents. Enmark M; Bagge J; Samuelsson J; Thunberg L; Örnskov E; Leek H; Limé F; Fornstedt T Anal Bioanal Chem; 2020 Jan; 412(2):299-309. PubMed ID: 31814048 [TBL] [Abstract][Full Text] [Related]
10. In vitro metabolism of 2'-ribose unmodified and modified phosphorothioate oligonucleotide therapeutics using liquid chromatography mass spectrometry. Kim J; El Zahar NM; Bartlett MG Biomed Chromatogr; 2020 Jul; 34(7):e4839. PubMed ID: 32246854 [TBL] [Abstract][Full Text] [Related]
11. A new approach to preparation of antisense oligonucleotide samples with microextraction by packed sorbent. Nuckowski Ł; Kaczmarkiewicz A; Studzińska S; Buszewski B Analyst; 2019 Aug; 144(15):4622-4632. PubMed ID: 31245798 [TBL] [Abstract][Full Text] [Related]
12. Hydrophilic interaction liquid chromatography with mass spectrometry for the separation and identification of antisense oligonucleotides impurities and nusinersen metabolites. Vosáhlová Z; Kalíková K; Gilar M; Szymarek J; Mazurkiewicz-Bełdzińska M; Studzińska S J Chromatogr A; 2024 Jan; 1713():464535. PubMed ID: 38039623 [TBL] [Abstract][Full Text] [Related]
14. The impact of ion-pairing reagents on the selectivity and sensitivity in the analysis of modified oligonucleotides in serum samples by liquid chromatography coupled with tandem mass spectrometry. Studzińska S; Rola R; Buszewski B J Pharm Biomed Anal; 2017 May; 138():146-152. PubMed ID: 28208106 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of mobile phase composition for enhancing sensitivity of targeted quantification of oligonucleotides using ultra-high performance liquid chromatography and mass spectrometry: application to phosphorothioate deoxyribonucleic acid. Chen B; Bartlett MG J Chromatogr A; 2013 May; 1288():73-81. PubMed ID: 23528868 [TBL] [Abstract][Full Text] [Related]
16. Characterization and quantification of Bcl-2 antisense G3139 and metabolites in plasma and urine by ion-pair reversed phase HPLC coupled with electrospray ion-trap mass spectrometry. Dai G; Wei X; Liu Z; Liu S; Marcucci G; Chan KK J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Oct; 825(2):201-13. PubMed ID: 16111926 [TBL] [Abstract][Full Text] [Related]
17. Application of hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the retention and sensitivity studies of antisense oligonucleotides. Kilanowska A; Buszewski B; Studzińska S J Chromatogr A; 2020 Jul; 1622():461100. PubMed ID: 32359780 [TBL] [Abstract][Full Text] [Related]
18. Investigation of factors influencing the separation of diastereomers of phosphorothioated oligonucleotides. Enmark M; Rova M; Samuelsson J; Örnskov E; Schweikart F; Fornstedt T Anal Bioanal Chem; 2019 Jun; 411(15):3383-3394. PubMed ID: 31020370 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the first and second generation of antisense oligonucleotides in serum samples with the use of ultra high performance liquid chromatography coupled with tandem mass spectrometry. Kaczmarkiewicz A; Nuckowski Ł; Studzińska S Talanta; 2019 May; 196():54-63. PubMed ID: 30683403 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of modified antisense oligonucleotides in biological fluids using cationic nanoparticles for solid-phase extraction. Gerster M; Schewitz J; Fritz H; Maier M; Bayer E Anal Biochem; 1998 Sep; 262(2):177-84. PubMed ID: 9750130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]