BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24939362)

  • 21. Loss of lung mitochondrial aconitase activity due to hyperoxia in bronchopulmonary dysplasia in primates.
    Morton RL; Iklé D; White CW
    Am J Physiol; 1998 Jan; 274(1):L127-33. PubMed ID: 9458810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluoxetine may worsen hyperoxia-induced lung damage in neonatal rats.
    Porzionato A; Zaramella P; Macchi V; Grisafi D; Salmaso R; Baraldi M; Fornaro E; Tassone E; Masola V; Onisto M; Chiandetti L; De Caro R
    Histol Histopathol; 2012 Dec; 27(12):1599-610. PubMed ID: 23059890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia.
    Jin L; Yang H; Fu J; Xue X; Yao L; Qiao L
    Mol Med Rep; 2015 Jun; 11(6):4079-86. PubMed ID: 25672835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia.
    Dong J; Carey WA; Abel S; Collura C; Jiang G; Tomaszek S; Sutor S; Roden AC; Asmann YW; Prakash YS; Wigle DA
    BMC Genomics; 2012 May; 13():204. PubMed ID: 22646479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the expression profiles and functions of circRNAs in a newborn hyperoxia-induced rat bronchopulmonary dysplasia model.
    Cheng H; Wu B; Wang L; Hu T; Deng Z; Li D
    J Gene Med; 2020 May; 22(5):e3163. PubMed ID: 31961470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neonatal hyperoxic exposure persistently alters lung secretoglobins and annexin A1.
    Raffay TM; Locy ML; Hill CL; Jindal NS; Rogers LK; Welty SE; Tipple TE
    Biomed Res Int; 2013; 2013():408485. PubMed ID: 24187664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia.
    Chao CM; Yahya F; Moiseenko A; Tiozzo C; Shrestha A; Ahmadvand N; El Agha E; Quantius J; Dilai S; Kheirollahi V; Jones M; Wilhem J; Carraro G; Ehrhardt H; Zimmer KP; Barreto G; Ahlbrecht K; Morty RE; Herold S; Abellar RG; Seeger W; Schermuly R; Zhang JS; Minoo P; Bellusci S
    J Pathol; 2017 Jan; 241(1):91-103. PubMed ID: 27770432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury.
    Dinu D; Chu C; Veith A; Lingappan K; Couroucli X; Jefcoate CR; Sheibani N; Moorthy B
    Biochem Biophys Res Commun; 2016 Aug; 476(4):346-351. PubMed ID: 27235555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The genome-wide transcriptional response to neonatal hyperoxia identifies Ahr as a key regulator.
    Bhattacharya S; Zhou Z; Yee M; Chu CY; Lopez AM; Lunger VA; Solleti SK; Resseguie E; Buczynski B; Mariani TJ; O'Reilly MA
    Am J Physiol Lung Cell Mol Physiol; 2014 Oct; 307(7):L516-23. PubMed ID: 25150061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic analysis of candidate reference genes for gene expression analysis in hyperoxia-based mouse models of bronchopulmonary dysplasia.
    Linge M; Möbius MA; Rösen-Wolff A; Winkler S
    Am J Physiol Lung Cell Mol Physiol; 2021 Oct; 321(4):L718-L725. PubMed ID: 34378408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sex-specific differences in primary neonatal murine lung fibroblasts exposed to hyperoxia in vitro: implications for bronchopulmonary dysplasia.
    Balaji S; Dong X; Li H; Zhang Y; Steen E; Lingappan K
    Physiol Genomics; 2018 Nov; 50(11):940-946. PubMed ID: 30169132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown.
    Xu S; Xue X; You K; Fu J
    Respir Res; 2016 May; 17(1):50. PubMed ID: 27176222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early high dose antioxidant vitamins do not prevent bronchopulmonary dysplasia in premature baboons exposed to prolonged hyperoxia: a pilot study.
    Berger TM; Frei B; Rifai N; Avery ME; Suh J; Yoder BA; Coalson JJ
    Pediatr Res; 1998 Jun; 43(6):719-26. PubMed ID: 9621979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease.
    Reynolds CL; Zhang S; Shrestha AK; Barrios R; Shivanna B
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1597-605. PubMed ID: 27478373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell Division Cycle 2 Protects Neonatal Rats Against Hyperoxia-Induced Bronchopulmonary Dysplasia.
    Li Z; Chen Y; Li W; Yan F
    Yonsei Med J; 2020 Aug; 61(8):679-688. PubMed ID: 32734731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia.
    Jiménez J; Richter J; Nagatomo T; Salaets T; Quarck R; Wagennar A; Wang H; Vanoirbeek J; Deprest J; Toelen J
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27783043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperoxia reduces STX17 expression and inhibits the autophagic flux in alveolar type II epithelial cells in newborn rats.
    Zhang D; Zhao X; Zhang D; Gao S; Xue X; Fu J
    Int J Mol Med; 2020 Aug; 46(2):773-781. PubMed ID: 32467992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model.
    Shrestha AK; Gopal VYN; Menon RT; Hagan JL; Huang S; Shivanna B
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L734-L741. PubMed ID: 30047283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia.
    El Saie A; Fu C; Grimm SL; Robertson MJ; Hoffman K; Putluri V; Ambati CSR; Putluri N; Shivanna B; Coarfa C; Pammi M
    Pediatr Res; 2022 Dec; 92(6):1580-1589. PubMed ID: 35338351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.
    Alphonse RS; Vadivel A; Coltan L; Eaton F; Barr AJ; Dyck JR; Thébaud B
    Am J Respir Cell Mol Biol; 2011 Feb; 44(2):146-54. PubMed ID: 20348209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.