These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24939464)

  • 1. Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations.
    Taioli S
    J Mol Model; 2014 Jul; 20(7):2260. PubMed ID: 24939464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism.
    Qiu Z; Li P; Li Z; Yang J
    Acc Chem Res; 2018 Mar; 51(3):728-735. PubMed ID: 29493220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(1 1 1) substrate.
    Chen S; Gao J; Srinivasan BM; Zhang G; Sorkin V; Hariharaputran R; Zhang YW
    J Phys Condens Matter; 2020 Apr; 32(15):155401. PubMed ID: 31846953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper.
    Kidambi PR; Bayer BC; Blume R; Wang ZJ; Baehtz C; Weatherup RS; Willinger MG; Schloegl R; Hofmann S
    Nano Lett; 2013 Oct; 13(10):4769-78. PubMed ID: 24041311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology evolution of graphene in chemical vapor deposition, a combined theoretical/experimental approach toward shape control of graphene domains.
    Fan L; Zou J; Li Z; Li X; Wang K; Wei J; Zhong M; Wu D; Xu Z; Zhu H
    Nanotechnology; 2012 Mar; 23(11):115605. PubMed ID: 22383458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined DFT and kinetic Monte Carlo study of a bridging-spillover mechanism on fluorine-decorated graphene.
    Guo JH; Liu JX; Wang HB; Liu HY; Chen G
    Phys Chem Chem Phys; 2021 Jan; 23(3):2384-2391. PubMed ID: 33458726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene.
    Zhong K; Yang Y; Xu G; Zhang JM; Huang Z
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Monte Carlo investigations of adsorption energetics on graphene.
    Hsing CR; Wei CM; Chou MY
    J Phys Condens Matter; 2012 Oct; 24(39):395002. PubMed ID: 22909778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio calculations of the reaction pathways for methane decomposition over the Cu (111) surface.
    Gajewski G; Pao CW
    J Chem Phys; 2011 Aug; 135(6):064707. PubMed ID: 21842949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Model of CVD Growth of Graphene on Cu(111) Surface.
    Esmaeilpour M; Bügel P; Fink K; Studt F; Wenzel W; Kozlowska M
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocarbon decomposition kinetics on the Ir(111) surface.
    Tetlow H; Curcio D; Baraldi A; Kantorovich L
    Phys Chem Chem Phys; 2018 Feb; 20(9):6083-6099. PubMed ID: 29303172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene.
    Zhao P; Kim S; Chen X; Einarsson E; Wang M; Song Y; Wang H; Chiashi S; Xiang R; Maruyama S
    ACS Nano; 2014 Nov; 8(11):11631-8. PubMed ID: 25363605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdependency of subsurface carbon distribution and graphene-catalyst interaction.
    Weatherup RS; Amara H; Blume R; Dlubak B; Bayer BC; Diarra M; Bahri M; Cabrero-Vilatela A; Caneva S; Kidambi PR; Martin MB; Deranlot C; Seneor P; Schloegl R; Ducastelle F; Bichara C; Hofmann S
    J Am Chem Soc; 2014 Oct; 136(39):13698-708. PubMed ID: 25188018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Atomistic Tomographic Study of Oxygen and Hydrogen Atoms and their Molecules in CVD Grown Graphene.
    Baik SI; Ma L; Kim YJ; Li B; Liu M; Isheim D; Yakobson BI; Ajayan PM; Seidman DN
    Small; 2015 Nov; 11(44):5968-74. PubMed ID: 26450564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core level binding energies of functionalized and defective graphene.
    Susi T; Kaukonen M; Havu P; Ljungberg MP; Ayala P; Kauppinen EI
    Beilstein J Nanotechnol; 2014; 5():121-32. PubMed ID: 24605278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.
    Pandey SC; Singh T; Maroudas D
    J Chem Phys; 2009 Jul; 131(3):034503. PubMed ID: 19624205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physisorption, Diffusion, and Chemisorption Pathways of H2 Molecule on Graphene and on (2,2) Carbon Nanotube by First Principles Calculations.
    Costanzo F; Silvestrelli PL; Ancilotto F
    J Chem Theory Comput; 2012 Apr; 8(4):1288-94. PubMed ID: 26596745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice mismatch induced nonlinear growth of graphene.
    Wu P; Jiang H; Zhang W; Li Z; Hou Z; Yang J
    J Am Chem Soc; 2012 Apr; 134(13):6045-51. PubMed ID: 22401172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.