These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24939682)
1. Chitinase but N-acetyl-β-D-glucosaminidase production correlates to the biomass decline in Penicillium and Aspergillus species. Pusztahelyi T; Pócsi I Acta Microbiol Immunol Hung; 2014 Jun; 61(2):131-43. PubMed ID: 24939682 [TBL] [Abstract][Full Text] [Related]
3. Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Charlang G; Ng B; Horowitz NH; Horowitz RM Mol Cell Biol; 1981 Feb; 1(2):94-100. PubMed ID: 6242827 [TBL] [Abstract][Full Text] [Related]
4. Fungal growth rate and the formation of ethylene in soil. Lynch JM; Harper SH J Gen Microbiol; 1974 Nov; 85(1):91-6. PubMed ID: 4215868 [No Abstract] [Full Text] [Related]
5. Intergeneric cosynthesis of penicillin by strains of Penicillium chrysogenum, P. chrysogenum/notatum and Aspergillus nidulans. Makins JF; Allsop A; Holt G J Gen Microbiol; 1981 Feb; 122(2):339-43. PubMed ID: 6798163 [TBL] [Abstract][Full Text] [Related]
6. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi. Suresh PV; Anil Kumar PK Biodegradation; 2012 Jul; 23(4):597-607. PubMed ID: 22270691 [TBL] [Abstract][Full Text] [Related]
7. Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Pusztahelyi T; Molnár Z; Emri T; Klement E; Miskei M; Kerékgyárto J; Balla J; Pócsi I Folia Microbiol (Praha); 2006; 51(6):547-54. PubMed ID: 17455791 [TBL] [Abstract][Full Text] [Related]
8. The genetics of Penicillium chrysogenum. Ball C Prog Ind Microbiol; 1973; 12(0):47-72. PubMed ID: 4212418 [No Abstract] [Full Text] [Related]
9. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries. Lobos A; Harwood VJ; Scott KM; Cunningham JA J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646 [TBL] [Abstract][Full Text] [Related]
10. Autolytic enzymes are responsible for increased melanization of carbon stressed Aspergillus nidulans cultures. Szilágyi M; Anton F; Pócsi I; Emri T J Basic Microbiol; 2018 May; 58(5):440-447. PubMed ID: 29266292 [TBL] [Abstract][Full Text] [Related]
11. Production of N-Acetyl-d-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-d-glucosaminidase. Zhu W; Wang D; Liu T; Yang Q J Agric Food Chem; 2016 Sep; 64(35):6738-44. PubMed ID: 27546481 [TBL] [Abstract][Full Text] [Related]
12. Chitinases biosynthesis by immobilized Aeromonas hydrophila SBK1 by prawn shells valorization and application of enzyme cocktail for fungal protoplast preparation. Halder SK; Maity C; Jana A; Ghosh K; Das A; Paul T; Mohapatra PKD; Pati BR; Mondal KC J Biosci Bioeng; 2014 Feb; 117(2):170-177. PubMed ID: 23994224 [TBL] [Abstract][Full Text] [Related]
13. Genetics of biosynthesis and overproduction of penicillin. Macdonald KD; Holt G Sci Prog; 1976; 63(252):547-73. PubMed ID: 823642 [No Abstract] [Full Text] [Related]
14. Functional analysis of the C-II subgroup killer toxin-like chitinases in the filamentous ascomycete Aspergillus nidulans. Tzelepis GD; Melin P; Stenlid J; Jensen DF; Karlsson M Fungal Genet Biol; 2014 Mar; 64():58-66. PubMed ID: 24384382 [TBL] [Abstract][Full Text] [Related]
19. Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-D-glucosamine from colloidal chitin. Binod P; Sandhya C; Suma P; Szakacs G; Pandey A Bioresour Technol; 2007 Oct; 98(14):2742-8. PubMed ID: 17092709 [TBL] [Abstract][Full Text] [Related]
20. Production of chitinase by Fusarium species. Nuero OM Curr Microbiol; 1995 May; 30(5):287-9. PubMed ID: 7766156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]