These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24939896)

  • 1. Two cationic porphyrin isomers showing different multimeric G-quadruplex recognition specificity against monomeric G-quadruplexes.
    Huang XX; Zhu LN; Wu B; Huo YF; Duan NN; Kong DM
    Nucleic Acids Res; 2014 Jul; 42(13):8719-31. PubMed ID: 24939896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific recognition and stabilization of monomeric and multimeric G-quadruplexes by cationic porphyrin TMPipEOPP under molecular crowding conditions.
    Zhu LN; Wu B; Kong DM
    Nucleic Acids Res; 2013 Apr; 41(7):4324-35. PubMed ID: 23430152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new cationic porphyrin derivative (TMPipEOPP) with large side arm substituents: a highly selective G-quadruplex optical probe.
    Zhu LN; Zhao SJ; Wu B; Li XZ; Kong DM
    PLoS One; 2012; 7(5):e35586. PubMed ID: 22629300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Cationic Porphyrin as a New G-Quadruplex Probe with Wash-Free Cancer-Targeted Imaging Ability Under Acidic Microenvironments.
    Zhang R; Cheng M; Zhang LM; Zhu LN; Kong DM
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13350-13360. PubMed ID: 29619818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific recognition of telomeric multimeric G-quadruplexes by a simple-structure quinoline derivative.
    Zhao J; Yang Z; Zhai Q; Wei D
    Anal Chim Acta; 2020 Oct; 1132():93-100. PubMed ID: 32980115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly selective switch-on fluorescence sensor targeting telomeric dimeric G-quadruplex.
    Zhao J; Zhai Q
    Bioorg Med Chem Lett; 2021 May; 40():127971. PubMed ID: 33753263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific targeting of telomeric multimeric G-quadruplexes by a new triaryl-substituted imidazole.
    Hu MH; Chen SB; Wang B; Ou TM; Gu LQ; Tan JH; Huang ZS
    Nucleic Acids Res; 2017 Feb; 45(4):1606-1618. PubMed ID: 27923993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in the development of ligands specifically targeting telomeric multimeric G-quadruplexes.
    Zhao J; Zhai Q
    Bioorg Chem; 2020 Oct; 103():104229. PubMed ID: 32889384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure.
    Seenisamy J; Bashyam S; Gokhale V; Vankayalapati H; Sun D; Siddiqui-Jain A; Streiner N; Shin-Ya K; White E; Wilson WD; Hurley LH
    J Am Chem Soc; 2005 Mar; 127(9):2944-59. PubMed ID: 15740131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective interactions of cationic porphyrins with G-quadruplex structures.
    Han H; Langley DR; Rangan A; Hurley LH
    J Am Chem Soc; 2001 Sep; 123(37):8902-13. PubMed ID: 11552797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of guanine quadruplex DNA by the binding of porphyrins with cationic side arms.
    Yamashita T; Uno T; Ishikawa Y
    Bioorg Med Chem; 2005 Apr; 13(7):2423-30. PubMed ID: 15755644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the binding mode of porphyrins to G-quadruplex DNA.
    Wei C; Jia G; Zhou J; Han G; Li C
    Phys Chem Chem Phys; 2009 May; 11(20):4025-32. PubMed ID: 19440632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic porphyrins with large side arm substituents as resonance light scattering ratiometric probes for specific recognition of nucleic acid G-quadruplexes.
    Zhang LM; Cui YX; Zhu LN; Chu JQ; Kong DM
    Nucleic Acids Res; 2019 Apr; 47(6):2727-2738. PubMed ID: 30715502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic study on the binding of porphyrins to (G(4)T(4)G(4))4 parallel G-quadruplex.
    Wei C; Wang J; Zhang M
    Biophys Chem; 2010 May; 148(1-3):51-5. PubMed ID: 20202738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect multimeric G-quadruplexes fold into antiparallel structures of different compactness and stability in K
    Gao C; Chen J; Anwar N; Deng J; Wang Z; Umer M; He Y
    RSC Adv; 2023 Dec; 13(51):35937-35946. PubMed ID: 38090081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pyridyl substituents on the thermodynamics of porphyrin binding to G-quadruplex DNA.
    Rowland GB; Barnett K; Dupont JI; Akurathi G; Le VH; Lewis EA
    Bioorg Med Chem; 2013 Dec; 21(23):7515-22. PubMed ID: 24148836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes.
    Martino L; Pagano B; Fotticchia I; Neidle S; Giancola C
    J Phys Chem B; 2009 Nov; 113(44):14779-86. PubMed ID: 19824637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the interactions between Pt(II) and Pd(II) derivatives of 5,10,15,20-tetrakis (N-methyl-4-pyridyl) porphyrin and G-quadruplex DNA.
    Sabharwal NC; Mendoza O; Nicoludis JM; Ruan T; Mergny JL; Yatsunyk LA
    J Biol Inorg Chem; 2016 Apr; 21(2):227-39. PubMed ID: 26748794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Not all G-quadruplexes are created equally: an investigation of the structural polymorphism of the c-Myc G-quadruplex-forming sequence and its interaction with the porphyrin TMPyP4.
    Le HT; Miller MC; Buscaglia R; Dean WL; Holt PA; Chaires JB; Trent JO
    Org Biomol Chem; 2012 Dec; 10(47):9393-404. PubMed ID: 23108607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridyl-substituted corrole isomers: synthesis and their regulation to G-quadruplex structures.
    Ma H; Zhang M; Zhang D; Huang R; Zhao Y; Yang H; Liu Y; Weng X; Zhou Y; Deng M; Xu L; Zhou X
    Chem Asian J; 2010 Jan; 5(1):114-22. PubMed ID: 19937863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.