These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 24939994)

  • 1. Pseudosynapsis and decreased stringency of meiotic repair pathway choice on the hemizygous sex chromosome of Caenorhabditis elegans males.
    Checchi PM; Lawrence KS; Van MV; Larson BJ; Engebrecht J
    Genetics; 2014 Jun; 197(2):543-60. PubMed ID: 24939994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To Break or Not To Break: Sex Chromosome Hemizygosity During Meiosis in Caenorhabditis.
    Van MV; Larson BJ; Engebrecht J
    Genetics; 2016 Nov; 204(3):999-1013. PubMed ID: 27605052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in
    Li Q; Hariri S; Engebrecht J
    Genetics; 2020 Oct; 216(2):359-379. PubMed ID: 32796008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COM-1 promotes homologous recombination during Caenorhabditis elegans meiosis by antagonizing Ku-mediated non-homologous end joining.
    Lemmens BB; Johnson NM; Tijsterman M
    PLoS Genet; 2013; 9(2):e1003276. PubMed ID: 23408909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptonemal Complex Central Region Proteins Promote Localization of Pro-crossover Factors to Recombination Events During
    Cahoon CK; Helm JM; Libuda DE
    Genetics; 2019 Oct; 213(2):395-409. PubMed ID: 31431470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.
    Rosu S; Zawadzki KA; Stamper EL; Libuda DE; Reese AL; Dernburg AF; Villeneuve AM
    PLoS Genet; 2013; 9(8):e1003674. PubMed ID: 23950729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdependent and separable functions of
    Girard C; Roelens B; Zawadzki KA; Villeneuve AM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4443-E4452. PubMed ID: 29686104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATM and ATR Influence Meiotic Crossover Formation Through Antagonistic and Overlapping Functions in
    Li W; Yanowitz JL
    Genetics; 2019 Jun; 212(2):431-443. PubMed ID: 31015193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement.
    Woglar A; Daryabeigi A; Adamo A; Habacher C; Machacek T; La Volpe A; Jantsch V
    PLoS Genet; 2013; 9(3):e1003335. PubMed ID: 23505384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis.
    Goodyer W; Kaitna S; Couteau F; Ward JD; Boulton SJ; Zetka M
    Dev Cell; 2008 Feb; 14(2):263-74. PubMed ID: 18267094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation.
    Lao JP; Cloud V; Huang CC; Grubb J; Thacker D; Lee CY; Dresser ME; Hunter N; Bishop DK
    PLoS Genet; 2013; 9(12):e1003978. PubMed ID: 24367271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meiotic DNA break repair can utilize homolog-independent chromatid templates in C. elegans.
    Toraason E; Horacek A; Clark C; Glover ML; Adler VL; Premkumar T; Salagean A; Cole F; Libuda DE
    Curr Biol; 2021 Apr; 31(7):1508-1514.e5. PubMed ID: 33740427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural maintenance of chromosomes (SMC) proteins promote homolog-independent recombination repair in meiosis crucial for germ cell genomic stability.
    Bickel JS; Chen L; Hayward J; Yeap SL; Alkers AE; Chan RC
    PLoS Genet; 2010 Jul; 6(7):e1001028. PubMed ID: 20661436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination.
    Penkner A; Portik-Dobos Z; Tang L; Schnabel R; Novatchkova M; Jantsch V; Loidl J
    EMBO J; 2007 Dec; 26(24):5071-82. PubMed ID: 18007596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new thermosensitive smc-3 allele reveals involvement of cohesin in homologous recombination in C. elegans.
    Baudrimont A; Penkner A; Woglar A; Mamnun YM; Hulek M; Struck C; Schnabel R; Loidl J; Jantsch V
    PLoS One; 2011; 6(9):e24799. PubMed ID: 21957461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans.
    Lascarez-Lagunas LI; Martinez-Garcia M; Nadarajan S; Diaz-Pacheco BN; Berson E; Colaiácovo MP
    PLoS Genet; 2023 Jan; 19(1):e1010627. PubMed ID: 36706157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis.
    Smolikov S; Schild-Prüfert K; Colaiácovo MP
    PLoS Genet; 2008 Jun; 4(6):e1000088. PubMed ID: 18535664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quality control mechanism coordinates meiotic prophase events to promote crossover assurance.
    Deshong AJ; Ye AL; Lamelza P; Bhalla N
    PLoS Genet; 2014 Apr; 10(4):e1004291. PubMed ID: 24762417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis.
    Smolikov S; Eizinger A; Hurlburt A; Rogers E; Villeneuve AM; Colaiácovo MP
    Genetics; 2007 Aug; 176(4):2027-33. PubMed ID: 17565963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint.
    Stamper EL; Rodenbusch SE; Rosu S; Ahringer J; Villeneuve AM; Dernburg AF
    PLoS Genet; 2013; 9(8):e1003679. PubMed ID: 23990794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.