BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24940682)

  • 1. Plants salvage deoxyribonucleosides in mitochondria.
    Clausen AR; Mutahir Z; Munch-Petersen B; Piškur J
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):291-5. PubMed ID: 24940682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana.
    Clausen AR; Girandon L; Ali A; Knecht W; Rozpedowska E; Sandrini MP; Andreasson E; Munch-Petersen B; Piškur J
    FEBS J; 2012 Oct; 279(20):3889-97. PubMed ID: 22897443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial versus cytosolic activities of deoxyribonucleoside salvage enzymes.
    Söderlund JC; Arnér ES
    Adv Exp Med Biol; 1994; 370():201-4. PubMed ID: 7660890
    [No Abstract]   [Full Text] [Related]  

  • 5. Incorporation of deoxyribonucleosides into DNA of coryneform bacteria and the relevance of deoxyribonucleoside kinases.
    Auling G; Prelle H; Diekmann H
    Eur J Biochem; 1982 Jan; 121(2):365-70. PubMed ID: 6277626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dictyostelium discoideum salvages purine deoxyribonucleosides by highly specific bacterial-like deoxyribonucleoside kinases.
    Sandrini MP; Söderbom F; Mikkelsen NE; Piskur J
    J Mol Biol; 2007 Jun; 369(3):653-64. PubMed ID: 17448496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multisubstrate deoxyribonucleoside kinase from plants.
    Clausen AR; Girandon L; Knecht W; Survery S; Andreasson E; Munch-Petersen B; Piskur J
    Nucleic Acids Symp Ser (Oxf); 2008; (52):489-90. PubMed ID: 18776467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine.
    Tinta T; Christiansen LS; Konrad A; Liberles DA; Turk V; Munch-Petersen B; Piškur J; Clausen AR
    FEMS Microbiol Lett; 2012 Jun; 331(2):120-7. PubMed ID: 22462611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines.
    Knecht W; Sandrini MP; Johansson K; Eklund H; Munch-Petersen B; Piskur J
    EMBO J; 2002 Apr; 21(7):1873-80. PubMed ID: 11927571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-activity relationships for phosphorylation of nucleoside analogs to monophosphates by nucleoside kinases.
    Johansson NG; Eriksson S
    Acta Biochim Pol; 1996; 43(1):143-60. PubMed ID: 8790720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial thymidine kinase 2 but not deoxyguanosine kinase is up-regulated during the stationary growth phase of cultured cells.
    Sun R; Eriksson S; Wang L
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):282-6. PubMed ID: 24940680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities.
    Gerth ML; Lutz S
    J Mol Biol; 2007 Jul; 370(4):742-51. PubMed ID: 17543337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy.
    Saada A; Shaag A; Mandel H; Nevo Y; Eriksson S; Elpeleg O
    Nat Genet; 2001 Nov; 29(3):342-4. PubMed ID: 11687801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria.
    Sweetlove LJ; Mowday B; Hebestreit HF; Leaver CJ; Millar AH
    FEBS Lett; 2001 Nov; 508(2):272-6. PubMed ID: 11718729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling.
    Graham JW; Williams TC; Morgan M; Fernie AR; Ratcliffe RG; Sweetlove LJ
    Plant Cell; 2007 Nov; 19(11):3723-38. PubMed ID: 17981998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian deoxyribonucleoside kinases.
    Arnér ES; Eriksson S
    Pharmacol Ther; 1995; 67(2):155-86. PubMed ID: 7494863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of deoxycytidine and thymidine kinase deficiency on substrate cycles between deoxyribonucleosides and their 5'-phosphates.
    Höglund L; Pontis E; Reichard P
    Cancer Res; 1988 Jul; 48(13):3681-7. PubMed ID: 2837322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deoxyribonucleoside kinases in mitochondrial DNA depletion.
    Saada-Reisch A
    Nucleosides Nucleotides Nucleic Acids; 2004 Oct; 23(8-9):1205-15. PubMed ID: 15571232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosquito has a single multisubstrate deoxyribonucleoside kinase characterized by unique substrate specificity.
    Knecht W; Petersen GE; Sandrini MP; Søndergaard L; Munch-Petersen B; Piskur J
    Nucleic Acids Res; 2003 Mar; 31(6):1665-72. PubMed ID: 12626708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression of a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster and its C-terminal deletion mutants.
    Munch-Petersen B; Knecht W; Lenz C; Søndergaard L; Piskur J
    J Biol Chem; 2000 Mar; 275(9):6673-9. PubMed ID: 10692477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.