These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24940780)

  • 1. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.
    Pallavicini C; Levi V; Wetzler DE; Angiolini JF; Benseñor L; Despósito MA; Bruno L
    Biophys J; 2014 Jun; 106(12):2625-35. PubMed ID: 24940780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When size does matter: organelle size influences the properties of transport mediated by molecular motors.
    De Rossi MC; Bruno L; Wolosiuk A; Despósito MA; Levi V
    Biochim Biophys Acta; 2013 Nov; 1830(11):5095-103. PubMed ID: 23872153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.
    Smoler M; Coceano G; Testa I; Bruno L; Levi V
    Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118726. PubMed ID: 32320724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of microtubule buckling in living cells.
    Pallavicini C; Monastra A; Bardeci NG; Wetzler D; Levi V; Bruno L
    Eur Biophys J; 2017 Sep; 46(6):581-594. PubMed ID: 28424847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions.
    Schaedel L; Lorenz C; Schepers AV; Klumpp S; Köster S
    Nat Commun; 2021 Jun; 12(1):3799. PubMed ID: 34145230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.
    Robert A; Herrmann H; Davidson MW; Gelfand VI
    FASEB J; 2014 Jul; 28(7):2879-90. PubMed ID: 24652946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous dynamics of melanosomes driven by myosin-V in Xenopus laevis melanophores.
    Brunstein M; Bruno L; Desposito M; Levi V
    Biophys J; 2009 Sep; 97(6):1548-57. PubMed ID: 19751659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks.
    Fernández Casafuz AB; De Rossi MC; Bruno L
    Sci Rep; 2023 Mar; 13(1):4065. PubMed ID: 36906690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape.
    Gittes F; Mickey B; Nettleton J; Howard J
    J Cell Biol; 1993 Feb; 120(4):923-34. PubMed ID: 8432732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells.
    Bruno L; Salierno M; Wetzler DE; Despósito MA; Levi V
    PLoS One; 2011 Apr; 6(4):e18332. PubMed ID: 21483765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules.
    Mohan R; John A
    IUBMB Life; 2015 Jun; 67(6):395-403. PubMed ID: 26104829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale trend analysis of microtubule transport in melanophores.
    Zaliapin I; Semenova I; Kashina A; Rodionov V
    Biophys J; 2005 Jun; 88(6):4008-16. PubMed ID: 15764663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural interaction of cytoskeletal components.
    Schliwa M; van Blerkom J
    J Cell Biol; 1981 Jul; 90(1):222-35. PubMed ID: 7019221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring microtubule persistence length using a microtubule gliding assay.
    Martin DS
    Methods Cell Biol; 2013; 115():13-25. PubMed ID: 23973063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles.
    Bruno L; Echarte MM; Levi V
    Cell Biochem Biophys; 2008; 52(3):191-201. PubMed ID: 19002657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force fluctuations and polymerization dynamics of intracellular microtubules.
    Brangwynne CP; MacKintosh FC; Weitz DA
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16128-33. PubMed ID: 17911265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.